Analysis of Iridium-augmented GPS for floating carrier phase positioning

Mathieu Joerger, Livio Gratton, Boris Pervan, Clark E. Cohen

Research output: Contribution to journalArticlepeer-review

99 Scopus citations


Carrier-phase ranging measurements from Global Positioning System (GPS) and low-Earth-orbiting Iridium telecommunication satellites are integrated in a precision navigation system named iGPS. The basic goal of the system is to enhance GPS positioning and timing performance, especially under jamming. In addition, large satellite geometry variations generated by fast-moving Iridium spacecraft enable rapid estimation of floating cycle ambiguities. Augmentation of GPS with Iridium satellites also guarantees signal redundancy, which enables Receiver Autonomous Integrity Monitoring (RAIM). In this work, parametric models are developed for iGPS measurement error sources and for wide-area corrections from an assumed network of ground reference stations. A fixed-interval positioning and cycle ambiguity estimation algorithm is derived and a residual-based carrier-phase RAIM detection method is investigated for integrity against single-satellite step and ramp-type faults of all magnitudes and start-times. Predicted overall performance is quantified for various ground, space, and user segment configurations.

Original languageEnglish (US)
Pages (from-to)137-160
Number of pages24
JournalNavigation, Journal of the Institute of Navigation
Issue number2
StatePublished - 2010

ASJC Scopus subject areas

  • Aerospace Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Analysis of Iridium-augmented GPS for floating carrier phase positioning'. Together they form a unique fingerprint.

Cite this