TY - JOUR
T1 - Analysis of hairless corepressor mutants to characterize molecular cooperation with the vitamin D receptor in promoting the mammalian hair cycle
AU - Hsieh, Jui Cheng
AU - Slater, Stephanie A.
AU - Whitfield, G. Kerr
AU - Dawson, Jamie L.
AU - Hsieh, Grace
AU - Sheedy, Craig
AU - Haussler, Carol A.
AU - Haussler, Mark R.
PY - 2010/6/1
Y1 - 2010/6/1
N2 - The mammalian hair cycle requires both the vitamin D receptor (VDR) and the hairless (Hr) corepressor, each of which is expressed in the hair follicle. Hr interacts directly with VDR to repress VDR-targeted transcription. Herein, we further map the VDR-interaction domain to regions in the C-terminal half of Hr that contain two LXXLL-like pairs of motifs known to mediate contact of Hr with the RAR-related orphan receptor alpha and with the thyroid hormone receptor, respectively. Site-directed mutagenesis indicates that all four hydrophobic motifs are required for VDR transrepression by Hr. Point mutation of rat Hr at conserved residues corresponding to natural mutants causing alopecia in mice (G985W and a C-terminal deletion ΔAK) and in humans (P95S, C422Y, E611G, R640Q, C642G, N988S, D1030N, A1040T, V1074M, and V1154D), as well as alteration of residues in the C-terminal Jumonji C domain implicated in histone demethylation activity (C1025G/E1027G and H1143G) revealed that all Hr mutants retained VDR association, and that transrepressor activity was selectively abrogated in C642G, G985W, N988S, D1030N, V1074M, H1143G, and V1154D. Four of these latter Hr mutants (C642G, N988S, D1030N, and V1154D) were found to associate normally with histone deacetylase-3. Finally, we identified three regions of human VDR necessary for association with Hr, namely residues 109-111, 134-201, and 202-303. It is concluded that Hr and VDR interact via multiple protein-protein interfaces, with Hr recruiting histone deacetylases and possibly itself catalyzing histone demethylation to effect chromatin remodeling and repress the transcription of VDR target genes that control the hair cycle.
AB - The mammalian hair cycle requires both the vitamin D receptor (VDR) and the hairless (Hr) corepressor, each of which is expressed in the hair follicle. Hr interacts directly with VDR to repress VDR-targeted transcription. Herein, we further map the VDR-interaction domain to regions in the C-terminal half of Hr that contain two LXXLL-like pairs of motifs known to mediate contact of Hr with the RAR-related orphan receptor alpha and with the thyroid hormone receptor, respectively. Site-directed mutagenesis indicates that all four hydrophobic motifs are required for VDR transrepression by Hr. Point mutation of rat Hr at conserved residues corresponding to natural mutants causing alopecia in mice (G985W and a C-terminal deletion ΔAK) and in humans (P95S, C422Y, E611G, R640Q, C642G, N988S, D1030N, A1040T, V1074M, and V1154D), as well as alteration of residues in the C-terminal Jumonji C domain implicated in histone demethylation activity (C1025G/E1027G and H1143G) revealed that all Hr mutants retained VDR association, and that transrepressor activity was selectively abrogated in C642G, G985W, N988S, D1030N, V1074M, H1143G, and V1154D. Four of these latter Hr mutants (C642G, N988S, D1030N, and V1154D) were found to associate normally with histone deacetylase-3. Finally, we identified three regions of human VDR necessary for association with Hr, namely residues 109-111, 134-201, and 202-303. It is concluded that Hr and VDR interact via multiple protein-protein interfaces, with Hr recruiting histone deacetylases and possibly itself catalyzing histone demethylation to effect chromatin remodeling and repress the transcription of VDR target genes that control the hair cycle.
KW - Calcitriol receptors
KW - Histone deacetylase
KW - Histone demethylase
KW - Human HR protein
KW - Jumonji domain
KW - Rat HR protein
UR - http://www.scopus.com/inward/record.url?scp=77952738855&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952738855&partnerID=8YFLogxK
U2 - 10.1002/jcb.22578
DO - 10.1002/jcb.22578
M3 - Article
C2 - 20512927
AN - SCOPUS:77952738855
SN - 0730-2312
VL - 110
SP - 671
EP - 686
JO - Journal of Cellular Biochemistry
JF - Journal of Cellular Biochemistry
IS - 3
ER -