TY - GEN
T1 - An Unsupervised Method for Learning Representations of Multi-word Expressions for Semantic Classification
AU - Vacareanu, Robert
AU - Valenzuela-Escaŕcega, Marco A.
AU - Sharp, Rebecca
AU - Surdeanu, Mihai
N1 - Publisher Copyright:
© 2020 COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference. All rights reserved.
PY - 2020
Y1 - 2020
N2 - This paper explores an unsupervised approach to learning a compositional representation function for multi-word expressions (MWEs), and evaluates it on the Tratz dataset, which associates two-word expressions with the semantic relation between the compound constituents (e.g. the label employer is associated with the noun compound government agency) (Tratz, 2011). The composition function is based on recurrent neural networks, and is trained using the Skip-Gram objective to predict the words in the context of MWEs. Thus our approach can naturally leverage large unlabeled text sources. Further, our method can make use of provided MWEs when available, but can also function as a completely unsupervised algorithm, using MWE boundaries predicted by a single, domain-agnostic part-of-speech pattern. With pre-defined MWE boundaries, our method outperforms the previous state-of-the-art performance on the coarse-grained evaluation of the Tratz dataset (Tratz, 2011), with an F1 score of 50.4%. The unsupervised version of our method approaches the performance of the supervised one, and even outperforms it in some configurations.
AB - This paper explores an unsupervised approach to learning a compositional representation function for multi-word expressions (MWEs), and evaluates it on the Tratz dataset, which associates two-word expressions with the semantic relation between the compound constituents (e.g. the label employer is associated with the noun compound government agency) (Tratz, 2011). The composition function is based on recurrent neural networks, and is trained using the Skip-Gram objective to predict the words in the context of MWEs. Thus our approach can naturally leverage large unlabeled text sources. Further, our method can make use of provided MWEs when available, but can also function as a completely unsupervised algorithm, using MWE boundaries predicted by a single, domain-agnostic part-of-speech pattern. With pre-defined MWE boundaries, our method outperforms the previous state-of-the-art performance on the coarse-grained evaluation of the Tratz dataset (Tratz, 2011), with an F1 score of 50.4%. The unsupervised version of our method approaches the performance of the supervised one, and even outperforms it in some configurations.
UR - http://www.scopus.com/inward/record.url?scp=85116929273&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116929273&partnerID=8YFLogxK
U2 - 10.18653/v1/2020.coling-main.297
DO - 10.18653/v1/2020.coling-main.297
M3 - Conference contribution
AN - SCOPUS:85116929273
T3 - COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference
SP - 3346
EP - 3356
BT - COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference
A2 - Scott, Donia
A2 - Bel, Nuria
A2 - Zong, Chengqing
PB - Association for Computational Linguistics (ACL)
T2 - 28th International Conference on Computational Linguistics, COLING 2020
Y2 - 8 December 2020 through 13 December 2020
ER -