An On-Orbit CubeSat Centrifuge for Asteroid Science and Exploration

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

There are thousands of asteroids in near-Earth space and millions expected in the Main Belt. They are diverse in their physical properties and compositions. They are also time capsules of the early Solar System making them valuable for planetary science, and are strategic for resource mining, planetary defense/security and as interplanetary depots. But we lack direct knowledge of the geophysical behavior of an asteroid surface under milligravity conditions, and therefore landing on an asteroid and manipulating its surface material remains a daunting challenge. Towards this goal we are putting forth plans for a 12U CubeSat that will be in Low Earth Orbit and that will operate as a spinning centrifuge on-orbit. In this paper, we will present an overview of the systems engineering and instrumentation design on the spacecraft. Parts of this 12U CubeSat will contain a laboratory that will recreate asteroid surface conditions by containing crushed meteorite. The laboratory will spin at 1 to 2 RPM during the primary mission to simulate surface conditions of asteroids 2 km and smaller, followed by an extended mission where the spacecraft will spin at even higher RPM. The result is a bed of realistic regolith, the environment that landers and diggers and maybe astronauts will interact with. The CubeSat is configured with cameras, lasers, actuators and small mechanical instruments to both observe and manipulate the regolith at low simulated gravity conditions. A series of experiments will measure the general behavior, internal friction, adhesion, dilatancy, coefficients of restitution and other parameters that can feed into asteroid surface dynamics simulations. Effective gravity can be varied, and external mechanical forces can be applied. These centrifuge facilities in space will require significantly less resources and budget to maintain, operating in LEO, compared to the voyages to deep space. This means we can maintain a persistent presence in the relevant deep space environment without having to go there. Having asteroid-like centrifuges in LEO would serve the important tactical goal of preparing and maintaining readiness, even when missions are delayed or individual programs get cancelled.

Original languageEnglish (US)
Title of host publication2019 IEEE Aerospace Conference, AERO 2019
PublisherIEEE Computer Society
ISBN (Electronic)9781538668542
DOIs
StatePublished - Mar 2019
Event2019 IEEE Aerospace Conference, AERO 2019 - Big Sky, United States
Duration: Mar 2 2019Mar 9 2019

Publication series

NameIEEE Aerospace Conference Proceedings
Volume2019-March
ISSN (Print)1095-323X

Conference

Conference2019 IEEE Aerospace Conference, AERO 2019
Country/TerritoryUnited States
CityBig Sky
Period3/2/193/9/19

ASJC Scopus subject areas

  • Aerospace Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'An On-Orbit CubeSat Centrifuge for Asteroid Science and Exploration'. Together they form a unique fingerprint.

Cite this