TY - JOUR
T1 - An important step toward understanding the role of body-based cues on human spatial memory for large-scale environments
AU - Huffman, Derek J.
AU - Ekstrom, Arne D.
N1 - Funding Information:
Arne D. Ekstrom, National Institute of Neurological Disorders and Stroke (http://dx.doi.org/10.13039/100000065), grant numbers: NIH/NINDS NS076856, NIH/NINDS NS120237. Division of Behavioral and Cognitive Sciences (http://dx .doi.org/10.13039/100000169), grant number: NSF BCS-1630296.
Publisher Copyright:
© 2020 Massachusetts Institute of Technology.
PY - 2020
Y1 - 2020
N2 - Moving our body through space is fundamental to human navigation; however, technical and physical limitations have hindered our ability to study the role of these body-based cues experimentally. We recently designed an experiment using novel immersive virtual-reality technology, which allowed us to tightly control the availability of body-based cues to determine how these cues influence human spatial memory [Huffman, D. J., & Ekstrom, A. D. A modality-independent network underlies the retrieval of large-scale spatial environments in the human brain. Neuron, 104, 611–622, 2019]. Our analysis of behavior and fMRI data revealed a similar pattern of results across a range of body-based cues conditions, thus suggesting that participants likely relied primarily on vision to form and retrieve abstract, holistic representations of the large-scale environments in our experiment. We ended our paper by discussing a number of caveats and future directions for research on the role of body-based cues in human spatial memory. Here, we reiterate and expand on this discussion, and we use a commentary in this issue by A. Steel, C. E. Robertson, and J. S. Taube (Current promises and limitations of combined virtual reality and functional magnetic resonance imaging research in humans: A commentary on Huffman and Ekstrom (2019). Journal of Cognitive Neuroscience, 2020) as a helpful discussion point regarding some of the questions that we think will be the most interesting in the coming years. We highlight the exciting possibility of taking a more naturalistic approach to study the behavior, cognition, and neuroscience of navigation. Moreover, we share the hope that researchers who study navigation in humans and nonhuman animals will syner-gize to provide more rapid advancements in our understanding of cognition and the brain.
AB - Moving our body through space is fundamental to human navigation; however, technical and physical limitations have hindered our ability to study the role of these body-based cues experimentally. We recently designed an experiment using novel immersive virtual-reality technology, which allowed us to tightly control the availability of body-based cues to determine how these cues influence human spatial memory [Huffman, D. J., & Ekstrom, A. D. A modality-independent network underlies the retrieval of large-scale spatial environments in the human brain. Neuron, 104, 611–622, 2019]. Our analysis of behavior and fMRI data revealed a similar pattern of results across a range of body-based cues conditions, thus suggesting that participants likely relied primarily on vision to form and retrieve abstract, holistic representations of the large-scale environments in our experiment. We ended our paper by discussing a number of caveats and future directions for research on the role of body-based cues in human spatial memory. Here, we reiterate and expand on this discussion, and we use a commentary in this issue by A. Steel, C. E. Robertson, and J. S. Taube (Current promises and limitations of combined virtual reality and functional magnetic resonance imaging research in humans: A commentary on Huffman and Ekstrom (2019). Journal of Cognitive Neuroscience, 2020) as a helpful discussion point regarding some of the questions that we think will be the most interesting in the coming years. We highlight the exciting possibility of taking a more naturalistic approach to study the behavior, cognition, and neuroscience of navigation. Moreover, we share the hope that researchers who study navigation in humans and nonhuman animals will syner-gize to provide more rapid advancements in our understanding of cognition and the brain.
UR - http://www.scopus.com/inward/record.url?scp=85099031099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099031099&partnerID=8YFLogxK
U2 - 10.1162/jocn_a_01653
DO - 10.1162/jocn_a_01653
M3 - Article
C2 - 33226317
AN - SCOPUS:85099031099
SN - 0898-929X
VL - 33
SP - 167
EP - 179
JO - Journal of cognitive neuroscience
JF - Journal of cognitive neuroscience
IS - 2
ER -