TY - GEN
T1 - An Efficient Method for Ellipse Reconstruction Using the Hough Transform for Cherenkov Cone Detection
AU - Walenta, A. H.
AU - Beyerlein, B.
AU - Brill, A. B.
AU - Khalid, W.
AU - Fleck, I.
AU - Furenlid, L. R.
AU - Peterson, T. E.
N1 - Funding Information:
Manuscript received November 10, 2017. This work was supported in part by DFG (German Research Community). A. H. Walenta was with the University of Siegen, Germany, and is now with the Physics Department, Vanderbilt University, Nashville, TN 37235 USA (e-mail: [email protected]). B. Beyerlein is with the Physics Department, University of Siegen, Germany (Telephone: +49 271 740 3628, e-mail: [email protected]). A. B. Brill is with the Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA. (telephone: 615-343-7152, e-mail: [email protected]). I. Fleck is with the Physics Department, University of Siegen, Germany (Telephone: +49 271 740 3628, e-mail: ivor.fleck@ uni-siegen.de). L. R. Furenlid is with the College of Optical Sciences, University of Arizona, Tucson, AZ, USA, (telephone: 520-626-1069, e-mail: furen@radiology. arizona.edu ). W. Khalid is with the Physics Department, University of Siegen, Germany (Telephone: +49 271 740 3628, e-mail: [email protected]). T. E. Peterson is with the Institute of Imaging Science, Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville,TN37232,USA(telephone: 615-322-2648, ( e-mail: todd.e.peterson @vanderbilt.edu).
Publisher Copyright:
© 2017 IEEE.
PY - 2018/11/12
Y1 - 2018/11/12
N2 - With the availability of silicon photo diode arrays new imaging concepts such as the detection of Cherenkov light emitted from energetic Compton electrons generated after gamma ray interaction in thick radiators become feasible with the advantage of very fast timing. In simulations it had been shown that under conditions, where the multiple scattering of an electron track perpendicular to the read-out plane is sufficiently reduced, the position and the depth of interaction still are preserved in the detected photon pattern. However, the angular distribution of Compton electrons generated from gamma rays necessitates the reconstruction of ellipses. The widely used Hough transform for fast image reconstruction requires the use of a 5-dimensional parameter space, with the consequence of impractical exponential increase in computing time and loss of sensitivity. Here it is shown that the use of a priori knowledge reduces the reconstruction to the circular problem with the direct result of the depth of interaction and a simple geometrical calculation for positional and angular determination. It is found that for electrons with an energy of 4 MeV stopped in PMMA a precision of 4% for the depth of interaction (DOI) compared to the complementary thickness CD of the radiator (CD = thickness of the radiator minus DOI) can be obtained. For the directional resolution (relative angular resolution) the same value is obtained, yielding finally a position resolution similar to DOI since the Cherenkov angle to be used is close to 45 degrees. Applications of the method will be found in imaging of high energy therapeutic radio nuclides, industrial imaging and homeland security.
AB - With the availability of silicon photo diode arrays new imaging concepts such as the detection of Cherenkov light emitted from energetic Compton electrons generated after gamma ray interaction in thick radiators become feasible with the advantage of very fast timing. In simulations it had been shown that under conditions, where the multiple scattering of an electron track perpendicular to the read-out plane is sufficiently reduced, the position and the depth of interaction still are preserved in the detected photon pattern. However, the angular distribution of Compton electrons generated from gamma rays necessitates the reconstruction of ellipses. The widely used Hough transform for fast image reconstruction requires the use of a 5-dimensional parameter space, with the consequence of impractical exponential increase in computing time and loss of sensitivity. Here it is shown that the use of a priori knowledge reduces the reconstruction to the circular problem with the direct result of the depth of interaction and a simple geometrical calculation for positional and angular determination. It is found that for electrons with an energy of 4 MeV stopped in PMMA a precision of 4% for the depth of interaction (DOI) compared to the complementary thickness CD of the radiator (CD = thickness of the radiator minus DOI) can be obtained. For the directional resolution (relative angular resolution) the same value is obtained, yielding finally a position resolution similar to DOI since the Cherenkov angle to be used is close to 45 degrees. Applications of the method will be found in imaging of high energy therapeutic radio nuclides, industrial imaging and homeland security.
UR - http://www.scopus.com/inward/record.url?scp=85058485229&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058485229&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2017.8533037
DO - 10.1109/NSSMIC.2017.8533037
M3 - Conference contribution
AN - SCOPUS:85058485229
T3 - 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017 - Conference Proceedings
BT - 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017 - Conference Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2017
Y2 - 21 October 2017 through 28 October 2017
ER -