Abstract
Proteases are widely studied as they are integral players in cell-cycle control and apoptosis. We report a new approach for the design of a family of genetically encoded turn-on protease biosensors. In our design, an autoinhibited coiled-coil switch is turned on upon proteolytic cleavage, which results in the complementation of split-protein reporters. Utilizing this new autoinhibition design paradigm, we present the rational construction and optimization of three generations of protease biosensors, with the final design providing a 1000-fold increase in bioluminescent signal upon addition of the TEV protease. We demonstrate the generality of the approach utilizing two different split-protein reporters, firefly luciferase and β-lactamase, while also testing our design in the context of a therapeutically relevant protease, caspase-3. Finally, we present a dual protease sensor geometry that allows for the use of these turn-on sensors as potential AND logic gates. Thus, these studies potentially provide a new method for the design and implementation of genetically encoded turn-on protease sensors while also providing a general autoinhibited coiled-coil strategy for controlling the activity of fragmented proteins.
Original language | English (US) |
---|---|
Pages (from-to) | 15284-15290 |
Number of pages | 7 |
Journal | Journal of the American Chemical Society |
Volume | 131 |
Issue number | 42 |
DOIs | |
State | Published - Oct 28 2009 |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry