TY - JOUR
T1 - An assembled extreme value statistical model of karst spring discharge
AU - Fan, Yonghui
AU - Huo, Xueli
AU - Hao, Yonghong
AU - Liu, Yan
AU - Wang, Tongke
AU - Liu, Youcun
AU - Yeh, Tianchyi J.
N1 - Funding Information:
This work is partially supported by the National Natural Science Foundation of China 41272245 , 41001006 , 40972165 , and 40572150 , Tianjin Normal University Doctor Foundation of China 52XB1205 , and Opening Fund of Tianjin Key Laboratory of Water Resources and Environment 52XS1015 . Our gratitude is also extended to two anonymous reviewers for their efforts in reviewing the manuscript and their very encouraging, insightful, and constructive comments.
PY - 2013/11/11
Y1 - 2013/11/11
N2 - Karst spring discharge processes are complicated and nonstationary, and can be expressed as long-term trends with periodic variation and random fluctuation. Based on the conceptual model, we propose an assembled extreme value statistical model (AEVSM) for obtaining the extreme distribution of spring discharge depletion under effects of extreme climate variability and intense groundwater development. We eliminated the trend and periodicity of spring discharge to acquire the residuals. Using the quantile plot and Kolmogorov-Smirnov methods, it can be demonstrated that the residuals are stationary. The m period return level of the residuals of spring discharge is obtained by using a generalized Pareto distribution (GPD). We thus acquired the spring discharge distribution of extreme values by combining the trend, periodicity and the return level of residuals. We applied an AEVSM to the monthly spring discharge records for Niangziguan Springs in China, from January 1959 to December 2009, and subsequently acquired the spring discharge distribution of extreme values. Results indicate that after November 2014, the depletion rate of Niangziguan Springs discharge will accelerate, and the spring discharge has the risk of flow cessation with probability of 0.01 from December 2021 to October 2023. A 1% probability is admittedly small, but the probability will increase with time. The AEVSM is a robust method for analyzing the distribution of extreme karst spring discharge.
AB - Karst spring discharge processes are complicated and nonstationary, and can be expressed as long-term trends with periodic variation and random fluctuation. Based on the conceptual model, we propose an assembled extreme value statistical model (AEVSM) for obtaining the extreme distribution of spring discharge depletion under effects of extreme climate variability and intense groundwater development. We eliminated the trend and periodicity of spring discharge to acquire the residuals. Using the quantile plot and Kolmogorov-Smirnov methods, it can be demonstrated that the residuals are stationary. The m period return level of the residuals of spring discharge is obtained by using a generalized Pareto distribution (GPD). We thus acquired the spring discharge distribution of extreme values by combining the trend, periodicity and the return level of residuals. We applied an AEVSM to the monthly spring discharge records for Niangziguan Springs in China, from January 1959 to December 2009, and subsequently acquired the spring discharge distribution of extreme values. Results indicate that after November 2014, the depletion rate of Niangziguan Springs discharge will accelerate, and the spring discharge has the risk of flow cessation with probability of 0.01 from December 2021 to October 2023. A 1% probability is admittedly small, but the probability will increase with time. The AEVSM is a robust method for analyzing the distribution of extreme karst spring discharge.
KW - Assembled extreme value statistical model
KW - Flow cessation
KW - Generalized Pareto distribution
KW - Karst spring
KW - Niangziguan Springs
UR - https://www.scopus.com/pages/publications/84885765521
UR - https://www.scopus.com/inward/citedby.url?scp=84885765521&partnerID=8YFLogxK
U2 - 10.1016/j.jhydrol.2013.09.023
DO - 10.1016/j.jhydrol.2013.09.023
M3 - Article
AN - SCOPUS:84885765521
SN - 0022-1694
VL - 504
SP - 57
EP - 68
JO - Journal of Hydrology
JF - Journal of Hydrology
ER -