An absolute sodium abundance for a cloud-free 'hot Saturn' exoplanet

N. Nikolov, D. K. Sing, J. J. Fortney, J. M. Goyal, B. Drummond, T. M. Evans, N. P. Gibson, E. J.W. De Mooij, Z. Rustamkulov, H. R. Wakeford, B. Smalley, A. J. Burgasser, C. Hellier, Ch Helling, N. J. Mayne, N. Madhusudhan, T. Kataria, J. Baines, A. L. Carter, G. E. BallesterJ. K. Barstow, J. McCleery, J. J. Spake

Research output: Contribution to journalArticlepeer-review

119 Scopus citations

Abstract

Broad absorption signatures from alkali metals, such as the sodium (Na i) and potassium (K i) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets1-3. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles4-6. Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances7-9. Here we report an optical transmission spectrum for the 'hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logϵNa = 6.9-0.4 +0.6, and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Zp/Zo = 2.3-1.7 +8.9). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets10-12.

Original languageEnglish (US)
Pages (from-to)526-529
Number of pages4
JournalNature
Volume557
Issue number7706
DOIs
StatePublished - May 24 2018

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'An absolute sodium abundance for a cloud-free 'hot Saturn' exoplanet'. Together they form a unique fingerprint.

Cite this