Abstract
Anxiety is characteristic comorbidity of noise-induced hearing loss (NIHL), which causes physiological changes within the dentate gyrus (DG), a subfield of the hippocampus that modulates anxiety. However, which DG circuit underlies hearing loss-induced anxiety remains unknown. We utilize an NIHL mouse model to investigate short- and long-term synaptic plasticity in DG networks. The recently discovered longitudinal DG-DG network is a collateral of DG neurons synaptically connected with neighboring DG neurons and displays robust synaptic efficacy and plasticity. Furthermore, animals with NIHL demonstrate increased anxiety-like behaviors similar to a response to chronic restraint stress. These behaviors are concurrent with enhanced synaptic responsiveness and suppressed short- and long-term synaptic plasticity in the longitudinal DG-DG network but not in the transverse DG-CA3 connection. These findings suggest that DG-related anxiety is typified by synaptic alteration in the longitudinal DG-DG network.
Original language | English (US) |
---|---|
Article number | 104364 |
Journal | iScience |
Volume | 25 |
Issue number | 6 |
DOIs | |
State | Published - Jun 17 2022 |
Keywords
- Behavioral neuroscience
- Biological sciences
- Neuroscience
ASJC Scopus subject areas
- General