TY - JOUR
T1 - Alterations in the determinants of diastolic suction during pacing tachycardia
AU - Bell, Stephen P.
AU - Nyland, Lori
AU - Tischler, Marc D.
AU - McNabb, Mark
AU - Granzier, Henk
AU - LeWinter, Martin M.
PY - 2000
Y1 - 2000
N2 - In cardiomyocytes, generation of restoring forces (RFs) responsible for elastic recoil involves deformation of the sarcomeric protein titin in conjunction with shortening below slack length. At the left ventricular (LV) level, recoil and filling by suction require contraction to an end-systolic volume (ESV) below equilibrium volume (Veq) as well as large-scale deformations, for example, torsion or twist. Little is known about RFs and suction in the failing ventricle. We undertook a comparison of determinants of suction in open-chest dogs previously subjected to 2 weeks of pacing tachycardia (PT) and controls. To assess the ability of the LV to contract below Veq, we used a servomotor to clamp left atrial pressure and produce nonfilling diastoles, allowing measurement of fully relaxed pressure at varying volumes. We quantified twist with sonomicrometry. We also assessed transmural ratios of N2B to N2BA titin isoforms and total titin to myosin heavy chain (MHC) protein. In PT, the LV did not contract below Veq, even with marked reduction of volume (end-diastolic pressure [EDP], 1 to 2 mm Hg), whereas in controls ESV was less than Veq when EDP was less than ≃5 mm Hg. In PT, both systolic twist and diastolic untwisting rate were reduced, and there was exaggerated transmural variation in titin isoform and titin-to-MHC ratios, consistent with the more extensible N2BA being present in larger amounts in the subendocardium. Thus, in PT, determinants of suction at the level of the LV are markedly impaired. The altered transmural titin isoform gradient is consistent with a decrease in RFs and may contribute to these findings.
AB - In cardiomyocytes, generation of restoring forces (RFs) responsible for elastic recoil involves deformation of the sarcomeric protein titin in conjunction with shortening below slack length. At the left ventricular (LV) level, recoil and filling by suction require contraction to an end-systolic volume (ESV) below equilibrium volume (Veq) as well as large-scale deformations, for example, torsion or twist. Little is known about RFs and suction in the failing ventricle. We undertook a comparison of determinants of suction in open-chest dogs previously subjected to 2 weeks of pacing tachycardia (PT) and controls. To assess the ability of the LV to contract below Veq, we used a servomotor to clamp left atrial pressure and produce nonfilling diastoles, allowing measurement of fully relaxed pressure at varying volumes. We quantified twist with sonomicrometry. We also assessed transmural ratios of N2B to N2BA titin isoforms and total titin to myosin heavy chain (MHC) protein. In PT, the LV did not contract below Veq, even with marked reduction of volume (end-diastolic pressure [EDP], 1 to 2 mm Hg), whereas in controls ESV was less than Veq when EDP was less than ≃5 mm Hg. In PT, both systolic twist and diastolic untwisting rate were reduced, and there was exaggerated transmural variation in titin isoform and titin-to-MHC ratios, consistent with the more extensible N2BA being present in larger amounts in the subendocardium. Thus, in PT, determinants of suction at the level of the LV are markedly impaired. The altered transmural titin isoform gradient is consistent with a decrease in RFs and may contribute to these findings.
KW - Diastole
KW - Heart failure
KW - Restoring forces
KW - Suction
KW - Tachycardia
UR - http://www.scopus.com/inward/record.url?scp=0033899508&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033899508&partnerID=8YFLogxK
U2 - 10.1161/01.RES.87.3.235
DO - 10.1161/01.RES.87.3.235
M3 - Article
C2 - 10926875
AN - SCOPUS:0033899508
SN - 0009-7330
VL - 87
SP - 235
EP - 240
JO - Circulation research
JF - Circulation research
IS - 3
ER -