TY - JOUR
T1 - ALMA 200 pc Imaging of a z ∼7 Quasar Reveals a Compact, Disk-like Host Galaxy
AU - Walter, Fabian
AU - Neeleman, Marcel
AU - Decarli, Roberto
AU - Venemans, Bram
AU - Meyer, Romain
AU - Weiss, Axel
AU - Bañados, Eduardo
AU - Bosman, Sarah E.I.
AU - Carilli, Chris
AU - Fan, Xiaohui
AU - Riechers, Dominik
AU - Rix, Hans Walter
AU - Thompson, Todd A.
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - We present 0.″035 resolution (∼200 pc) imaging of the 158 μm [C ii] line and the underlying dust continuum of the z = 6.9 quasar J234833.34-305410.0. The 18 hour Atacama Large Millimeter/submillimeter Array observations reveal extremely compact emission (diameter ∼1 kpc) that is consistent with a simple, almost face-on, rotation-supported disk with a significant velocity dispersion of ∼160 km s-1. The gas mass in just the central 200 pc is ∼4 × 109 M ⊙, about a factor of two higher than that of the central supermassive black hole. Consequently we do not resolve the black hole's sphere of influence, and find no kinematic signature of the central supermassive black hole. Kinematic modeling of the [C ii] line shows that the dynamical mass at large radii is consistent with the gas mass, leaving little room for a significant mass contribution by stars and/or dark matter. The Toomre-Q parameter is less than unity throughout the disk, and thus is conducive to star formation, consistent with the high-infrared luminosity of the system. The dust in the central region is optically thick, at a temperature >132 K. Using standard scaling relations of dust heating by star formation, this implies an unprecedented high star formation rate density of >104 M ⊙ yr-1 kpc-2. Such a high number can still be explained with the Eddington limit for star formation under certain assumptions, but could also imply that the central supermassive black hole contributes to the heating of the dust in the central 200 pc.
AB - We present 0.″035 resolution (∼200 pc) imaging of the 158 μm [C ii] line and the underlying dust continuum of the z = 6.9 quasar J234833.34-305410.0. The 18 hour Atacama Large Millimeter/submillimeter Array observations reveal extremely compact emission (diameter ∼1 kpc) that is consistent with a simple, almost face-on, rotation-supported disk with a significant velocity dispersion of ∼160 km s-1. The gas mass in just the central 200 pc is ∼4 × 109 M ⊙, about a factor of two higher than that of the central supermassive black hole. Consequently we do not resolve the black hole's sphere of influence, and find no kinematic signature of the central supermassive black hole. Kinematic modeling of the [C ii] line shows that the dynamical mass at large radii is consistent with the gas mass, leaving little room for a significant mass contribution by stars and/or dark matter. The Toomre-Q parameter is less than unity throughout the disk, and thus is conducive to star formation, consistent with the high-infrared luminosity of the system. The dust in the central region is optically thick, at a temperature >132 K. Using standard scaling relations of dust heating by star formation, this implies an unprecedented high star formation rate density of >104 M ⊙ yr-1 kpc-2. Such a high number can still be explained with the Eddington limit for star formation under certain assumptions, but could also imply that the central supermassive black hole contributes to the heating of the dust in the central 200 pc.
UR - http://www.scopus.com/inward/record.url?scp=85126335101&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126335101&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac49e8
DO - 10.3847/1538-4357/ac49e8
M3 - Article
AN - SCOPUS:85126335101
SN - 0004-637X
VL - 927
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 21
ER -