TY - JOUR
T1 - Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential
AU - Wang, Jun Ming
AU - Brinton, Roberta Diaz
N1 - Funding Information:
This research was supported by grants from the Institute for Study of Aging/Alzheimer's Drug Discovery Foundation, the Kenneth T and Eileen L Norris Foundation and the LK Whittier Foundation to RDB. The excellent technical contributions of Angela Dietrich are acknowledged.
PY - 2008/12/3
Y1 - 2008/12/3
N2 - Background: Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods: In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results: Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion: Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.
AB - Background: Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods: In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results: Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion: Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.
UR - http://www.scopus.com/inward/record.url?scp=57449089909&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57449089909&partnerID=8YFLogxK
U2 - 10.1186/1471-2202-9-S2-S11
DO - 10.1186/1471-2202-9-S2-S11
M3 - Article
C2 - 19090984
AN - SCOPUS:57449089909
SN - 1471-2202
VL - 9
JO - BMC Neuroscience
JF - BMC Neuroscience
IS - SUPPL. 2
M1 - S11
ER -