Alignment as biological inspiration for control of multi agent systems

Hossein Rastgoftar, Suhada Jayasuriya

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In this paper, we develop a framework for evolution of a multi agent systems (MAS) under local perception. The idea of this paper comes from natural biological swarms where agents adjust their behavior based on individual perception of the behavior of its neighbors. Most available engineered swarms rely on local communication where an individual agent needs exact state information of its adjacent agents to evolve. We consider agents of a MAS to be particles of a continuum (deformable Body) transforming under a homogenous mapping. Homogenous transformations have the property that two crossing straight lines in an initial configuration translate as two different crossing straight lines. We will consider this feature of homogenous mappings to show how certain desired objectives can be achieved by agents of a swarm by preserving alignment among nearby agents. We show that evolution of a MAS under this alignment strategy can be achieved where agents don't need to know the exact positions of the adjacent agents nor do they need peer to peer communication.

Original languageEnglish (US)
Title of host publicationActive Control of Aerospace Structure; Motion Control; Aerospace Control; Assistive Robotic Systems; Bio-Inspired Systems; Biomedical/Bioengineering Applications; Building Energy Systems; Condition Based Monitoring; Control Design for Drilling Automation; Control of Ground Vehicles, Manipulators, Mechatronic Systems; Controls for Manufacturing; Distributed Control; Dynamic Modeling for Vehicle Systems; Dynamics and Control of Mobile and Locomotion Robots; Electrochemical Energy Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791846186
DOIs
StatePublished - 2014
Externally publishedYes
EventASME 2014 Dynamic Systems and Control Conference, DSCC 2014 - San Antonio, United States
Duration: Oct 22 2014Oct 24 2014

Publication series

NameASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Volume1

Conference

ConferenceASME 2014 Dynamic Systems and Control Conference, DSCC 2014
Country/TerritoryUnited States
CitySan Antonio
Period10/22/1410/24/14

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Alignment as biological inspiration for control of multi agent systems'. Together they form a unique fingerprint.

Cite this