Abstract
Previous lesion studies have shown compromised complex object discrimination in rats, monkeys, and human patients with damage to the perirhinal cortical region (PRC) of the medial temporal lobe. These findings support the notion that the PRC is involved in object discrimination when pairs of objects have a high degree of overlapping features but not when object discrimination can be resolved on the basis of a single feature (e.g., size or color). Recent studies have demonstrated age-related functional changes to the PRC in animals (rats and monkeys) resulting in impaired complex object discrimination and object recognition. To date, no studies have compared younger and older humans using paradigms previously shown to engage the PRC. To investigate the influence of age on complex object discrimination in humans, the present study used an object matching paradigm for blob-like objects that have previously been shown to recruit the PRC. Difficulty was manipulated by varying the number of overlapping features between objects. Functional MRI data was acquired to determine the involvement of the PRC in the two groups during complex object discrimination. Results indicated that while young and older adults performed similarly on the easy version of the task, most older adults were impaired relative to young participants when the number of overlapping features increased. fMRI results suggest that older adults do not engage bilateral anterior PRC to the same extent as young adults. Specifically, complex object matching performance in older adults was predicted by the degree to which they engage left anterior PRC. These results provide evidence for human age-related changes in PRC function that impact complex object discrimination.
Original language | English (US) |
---|---|
Pages (from-to) | 1978-1989 |
Number of pages | 12 |
Journal | Hippocampus |
Volume | 22 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2012 |
Keywords
- Aging
- FMRI
- Object discrimination
- Perirhinal cortex
ASJC Scopus subject areas
- Cognitive Neuroscience