Adversarial Audio Attacks that Evade Temporal Dependency

Heng Liu, Gregory Ditzler

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

As the real-world applications (image segmentation, speech recognition, machine translation, etc.) are increasingly adopting Deep Neural Networks (DNNs), DNN's vulnerabilities in a malicious environment have become an increasingly important research topic in adversarial machine learning. Adversarial machine learning (AML) focuses on exploring vulnerabilities and defensive techniques for machine learning models. Recent work has shown that most adversarial audio generation methods fail to consider audios' temporal dependency (TD) (i.e., adversarial audios exhibit weaker TD than benign audios). As a result, the adversarial audios are easily detectable by examining their TD. Therefore, one area of interest in the audio AML community is to develop a novel attack that evades a TD-based detection model. In this contribution, we revisit the LSTM model for audio transcription and propose a new audio attack algorithm that evades the TD-based detection by explicitly controlling the TD in generated adversarial audios. The experimental results show that the detectability of our adversarial audio is significantly reduced compared to the state-of-the-art audio attack algorithms. Furthermore, experiments also show that our adversarial audios remain nearly indistinguishable from benign audios with only negligible perturbation magnitude.

Original languageEnglish (US)
Title of host publication2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages639-646
Number of pages8
ISBN (Electronic)9781728125473
DOIs
StatePublished - Dec 1 2020
Event2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 - Virtual, Canberra, Australia
Duration: Dec 1 2020Dec 4 2020

Publication series

Name2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020

Conference

Conference2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020
Country/TerritoryAustralia
CityVirtual, Canberra
Period12/1/2012/4/20

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Decision Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Adversarial Audio Attacks that Evade Temporal Dependency'. Together they form a unique fingerprint.

Cite this