TY - JOUR
T1 - Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces
AU - Linker, Billy R.
AU - Khatiwada, Raju
AU - Perdrial, Nico
AU - Abrell, Leif
AU - Sierra-Alvarez, Reyes
AU - Field, James A.
AU - Chorover, Jon
N1 - Publisher Copyright:
© 2015 CSIRO.
PY - 2015
Y1 - 2015
N2 - Insensitive munitions compounds (IMCs) are increasingly used for military energetic materials, yet their environmental fate is poorly understood. Prior work has shown that the nitroaromatic 2,4-dinitroanisole (DNAN) and the heterocyclic nitrogen compound 3-nitro-1,2,4-triazole-5-one (NTO), both newly introduced IMCs, can undergo microbially mediated reduction under anoxic conditions to form 2-methoxy-5-nitroaniline (MENA) and 3-amino-1,2,4,triazole-5-one (ATO) respectively. In the present work, DNAN, MENA, NTO and ATO were subjected to batch adsorption-desorption experiments with specimen soil mineral adsorbents that included montmorillonite, birnessite and goethite. DNAN and MENA exhibited high affinity, linear adsorption to montmorillonite, with enhanced surface excess at a given aqueous equilibrium concentration for K+-saturated relative to Na+-saturated forms, but negligible adsorption to the metal oxides. Powder X-ray diffraction data and surface occupancy calculations indicate interlayer intrusion by DNAN and MENA and adsorption at siloxane sites. Conversely, NTO and ATO exhibited low sorptive affinity and apparent anion exclusion upon reaction with the negatively charged layer silicate clays. However, both of the N-heterocycles showed positive adsorption affinities for goethite (Kd values of 11.1 and 3.1, and HI values of 1.8 and 0.50 respectively), consistent with anion adsorption to the positively charged goethite surface. Both ATO and MENA were subjected to apparent oxidative, abiotic chemical transformation during reaction with birnessite. The results indicate that the IMCs studied will exhibit adsorptive retardation-and their biodegradation products may undergo further abiotic transformation-upon reaction at soil mineral surfaces.
AB - Insensitive munitions compounds (IMCs) are increasingly used for military energetic materials, yet their environmental fate is poorly understood. Prior work has shown that the nitroaromatic 2,4-dinitroanisole (DNAN) and the heterocyclic nitrogen compound 3-nitro-1,2,4-triazole-5-one (NTO), both newly introduced IMCs, can undergo microbially mediated reduction under anoxic conditions to form 2-methoxy-5-nitroaniline (MENA) and 3-amino-1,2,4,triazole-5-one (ATO) respectively. In the present work, DNAN, MENA, NTO and ATO were subjected to batch adsorption-desorption experiments with specimen soil mineral adsorbents that included montmorillonite, birnessite and goethite. DNAN and MENA exhibited high affinity, linear adsorption to montmorillonite, with enhanced surface excess at a given aqueous equilibrium concentration for K+-saturated relative to Na+-saturated forms, but negligible adsorption to the metal oxides. Powder X-ray diffraction data and surface occupancy calculations indicate interlayer intrusion by DNAN and MENA and adsorption at siloxane sites. Conversely, NTO and ATO exhibited low sorptive affinity and apparent anion exclusion upon reaction with the negatively charged layer silicate clays. However, both of the N-heterocycles showed positive adsorption affinities for goethite (Kd values of 11.1 and 3.1, and HI values of 1.8 and 0.50 respectively), consistent with anion adsorption to the positively charged goethite surface. Both ATO and MENA were subjected to apparent oxidative, abiotic chemical transformation during reaction with birnessite. The results indicate that the IMCs studied will exhibit adsorptive retardation-and their biodegradation products may undergo further abiotic transformation-upon reaction at soil mineral surfaces.
UR - http://www.scopus.com/inward/record.url?scp=84921832244&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921832244&partnerID=8YFLogxK
U2 - 10.1071/EN14065
DO - 10.1071/EN14065
M3 - Article
AN - SCOPUS:84921832244
SN - 1448-2517
VL - 12
SP - 74
EP - 84
JO - Environmental Chemistry
JF - Environmental Chemistry
IS - 1
ER -