Abstract
An adaptive, optical, radial basis function classifier for handwritten digit recognition is experimentally demonstrated. We describe a spatially multiplexed system that incorporates an on-line adaptation of weights and basis function widths to provide robustness to optical system imperfections and system noise. The optical system computes the Euclidean distances between a 100-dimensional input vector and 198 stored reference patterns in parallel by using dual vector–matrix multipliers and a contrast-reversing spatial light modulator. Software is used to emulate an electronic chip that performs the on-line learning of the weights and basis function widths. An experimental recognition rate of 92.7% correct out of 300 testing samples is achieved with the adaptive training, versus 31.0% correct for nonadaptive training. We compare the experimental results with a detailed computer model of the system in order to analyze the influence of various noise sources on the system performance.
Original language | English (US) |
---|---|
Pages (from-to) | 7545-7555 |
Number of pages | 11 |
Journal | Applied optics |
Volume | 34 |
Issue number | 32 |
DOIs | |
State | Published - Nov 1995 |
Keywords
- Optical neural networks
- Pattern recognition
- Radial basis functions
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Engineering (miscellaneous)
- Electrical and Electronic Engineering