Adaptive neural-fuzzy inference system to control dynamical systems with fractional order dampers

Arman Dabiri, Morad Nazari, Eric Butcher

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

In this paper, an adaptive neural fuzzy inference system (ANFIS)-based control technique is proposed to stabilize dynamical systems with fractional order dampers. For this purpose, a linear quadratic regulator (LQR) is first designed for the analogous linearized integer order systems where the fractional damper is replaced by the combination of an integer spring and an integer damper. Next, the ANFIS-based controller is trained based on the responses of the closed-loop LQR-controlled system under different scenarios such as several initial conditions and/or inputs. Since the number of fuzzy rules increases exponentially by increasing the number of inputs, a fusion function proposed in the literature is used to reduce the number of inputs in the ANFIS-based controller. Hence the number of fuzzy rules is reduced as well. The result of this training is a trained ANFIS-LQR controller that can be used for stabilizing the fractional-order models with fractional order dampers. As an illustrative example, the proposed technique is employed to stabilize an under-actuated double inverted pendulum on the cart with fractional order dampers.

Original languageEnglish (US)
Title of host publication2017 American Control Conference, ACC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1972-1977
Number of pages6
ISBN (Electronic)9781509059928
DOIs
StatePublished - Jun 29 2017
Event2017 American Control Conference, ACC 2017 - Seattle, United States
Duration: May 24 2017May 26 2017

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Other

Other2017 American Control Conference, ACC 2017
Country/TerritoryUnited States
CitySeattle
Period5/24/175/26/17

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Adaptive neural-fuzzy inference system to control dynamical systems with fractional order dampers'. Together they form a unique fingerprint.

Cite this