Abstract
We present an adaptive feature-specific imaging (AFSI) system and consider its application to a face recognition task. The proposed system makes use of previous measurements to adapt the projection basis at each step. Using sequential hypothesis testing, we compare AFSI with static-FSI (SFSI) and static or adaptive conventional imaging in terms of the number of measurements required to achieve a specified probability of misclassification (P e). The AFSI system exhibits significant improvement compared to SFSI and conventional imaging at low signal-to-noise ratio (SNR). It is shown that for M = 4 hypotheses and desired Pe = 10-2, AFSI requires 100 times fewer measurements than the adaptive conventional imager at SNR = -20 dB. We also show a trade-off, in terms of average detection time, between measurement SNR and adaptation advantage, resulting in an optimal value of integration time (equivalent to SNR) per measurement.
Original language | English (US) |
---|---|
Pages (from-to) | B21-B31 |
Journal | Applied optics |
Volume | 47 |
Issue number | 10 |
DOIs | |
State | Published - Apr 1 2008 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Engineering (miscellaneous)
- Electrical and Electronic Engineering