TY - JOUR
T1 - Adaptation of the transverse carpal ligament associated with repetitive hand use in pianists
AU - Mhanna, Christiane
AU - Marquardt, Tamara L.
AU - Li, Zong Ming
N1 - Funding Information:
Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number R21AR064957. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2016 Mhanna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/3
Y1 - 2016/3
N2 - The transverse carpal ligament (TCL) plays a critical role in carpal tunnel biomechanics through interactions with its surrounding tissues. The purpose of this study was to investigate the in vivo adaptations of the TCL's mechanical properties in response to repetitive hand use in pianists using acoustic radiation force impulse (ARFI) imaging. It was hypothesized that pianists, in comparison to non-pianists, would have a stiffer TCL as indicated by an increased acoustic shear wave velocity (SWV). ARFI imagining was performed for 10 female pianists and 10 female non-pianists. The median SWV values of the TCL were determined for the entire TCL, as well as for its radial and ulnar portions, rTCL and uTCL, respectively. The TCL SWV was significantly increased in pianists relative to non-pianists (p < 0.05). Additionally, the increased SWV was location dependent for both pianist and non-pianist groups (p < 0.05), with the rTCL having a significantly greater SWV than the uTCL. Between groups, the rTCL SWV of pianists was 22.2%greater than that of the non-pianists (p < 0.001). This localized increase of TCL SWV, i.e. stiffening, may be primarily attributable to focal biomechanical interactions that occur at the radial TCL aspect where the thenar muscles are anchored. Progressive stiffening of the TCL may become constraining to the carpal tunnel, leading to median nerve compression in the tunnel. TCL maladaptation helps explain why populations who repeatedly use their hands are at an increased risk of developing musculoskeletal pathologies, e.g. carpal tunnel syndrome.
AB - The transverse carpal ligament (TCL) plays a critical role in carpal tunnel biomechanics through interactions with its surrounding tissues. The purpose of this study was to investigate the in vivo adaptations of the TCL's mechanical properties in response to repetitive hand use in pianists using acoustic radiation force impulse (ARFI) imaging. It was hypothesized that pianists, in comparison to non-pianists, would have a stiffer TCL as indicated by an increased acoustic shear wave velocity (SWV). ARFI imagining was performed for 10 female pianists and 10 female non-pianists. The median SWV values of the TCL were determined for the entire TCL, as well as for its radial and ulnar portions, rTCL and uTCL, respectively. The TCL SWV was significantly increased in pianists relative to non-pianists (p < 0.05). Additionally, the increased SWV was location dependent for both pianist and non-pianist groups (p < 0.05), with the rTCL having a significantly greater SWV than the uTCL. Between groups, the rTCL SWV of pianists was 22.2%greater than that of the non-pianists (p < 0.001). This localized increase of TCL SWV, i.e. stiffening, may be primarily attributable to focal biomechanical interactions that occur at the radial TCL aspect where the thenar muscles are anchored. Progressive stiffening of the TCL may become constraining to the carpal tunnel, leading to median nerve compression in the tunnel. TCL maladaptation helps explain why populations who repeatedly use their hands are at an increased risk of developing musculoskeletal pathologies, e.g. carpal tunnel syndrome.
UR - http://www.scopus.com/inward/record.url?scp=84962485420&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962485420&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0150174
DO - 10.1371/journal.pone.0150174
M3 - Article
C2 - 26953892
AN - SCOPUS:84962485420
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 3
M1 - e0150174
ER -