Acyl-lipid desaturases and Vipp1 cooperate in cyanobacteria to produce novel omega-3 PUFA-containing glycolipids

Leslie B. Poole, Derek Parsonage, Susan Sergeant, Leslie R. Miller, Jingyun Lee, Cristina M. Furdui, Floyd H. Chilton

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Background: Dietary omega-3 (n-3), long chain (LC-, ≥ 20 carbons), polyunsaturated fatty acids (PUFAs) derived largely from marine animal sources protect against inflammatory processes and enhance brain development and function. With the depletion of natural stocks of marine animal sources and an increasing demand for n-3 LC-PUFAs, alternative, sustainable supplies are urgently needed. As a result, n-3 18-carbon and LC-PUFAs are being generated from plant or algal sources, either by engineering new biosynthetic pathways or by augmenting existing systems. Results: We utilized an engineered plasmid encoding two cyanobacterial acyl-lipid desaturases (DesB and DesD, encoding Δ15 and Δ6 desaturases, respectively) and "vesicle-inducing protein in plastids" (Vipp1) to induce production of stearidonic acid (SDA, 18:4 n-3) at high levels in three strains of cyanobacteria (10, 17 and 27% of total lipids in Anabaena sp. PCC7120, Synechococcus sp. PCC7002, and Leptolyngbya sp. strain BL0902, respectively). Lipidomic analysis revealed that in addition to SDA, the rare anti-inflammatory n-3 LC-PUFA eicosatetraenoic acid (ETA, 20:4 n-3) was synthesized in these engineered strains, and ~ 99% of SDA and ETA was complexed to bioavailable monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) species. Importantly, novel molecular species containing alpha-linolenic acid (ALA), SDA and/or ETA in both acyl positions of MGDG and DGDG were observed in the engineered Leptolyngbya and Synechococcus strains, suggesting that these could provide a rich source of anti-inflammatory molecules. Conclusions: Overall, this technology utilizes solar energy, consumes carbon dioxide, and produces large amounts of nutritionally important n-3 PUFAs and LC-PUFAs. Importantly, it can generate previously undescribed, highly bioavailable, anti-inflammatory galactosyl lipids. This technology could therefore be transformative in protecting ocean fisheries and augmenting the nutritional quality of human and animal food products.

Original languageEnglish (US)
Article number83
JournalBiotechnology for Biofuels
Volume13
Issue number1
DOIs
StatePublished - May 6 2020
Externally publishedYes

Keywords

  • Aquaculture
  • Bioengineering
  • Cyanobacteria
  • Leptolyngbya
  • Nutrition
  • Omega-3 polyunsaturated fatty acids

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology
  • Renewable Energy, Sustainability and the Environment
  • Energy(all)
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Acyl-lipid desaturases and Vipp1 cooperate in cyanobacteria to produce novel omega-3 PUFA-containing glycolipids'. Together they form a unique fingerprint.

Cite this