Acute trajectories of neural activation predict remission to pharmacotherapy in late-life depression

Helmet T. Karim, Maxwell Wang, Carmen Andreescu, Dana Tudorascu, Meryl A. Butters, Jordan F. Karp, Charles F. Reynolds, Howard J. Aizenstein

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Pharmacological treatment of major depressive disorder (MDD) typically involves a lengthy trial and error process to identify an effective intervention. This lengthy period prolongs suffering and worsens all-cause mortality, including from suicide, and is typically longer in late-life depression (LLD). Our group has recently demonstrated that during an open-label venlafaxine (serotonin-norepinephrine reuptake inhibitor) trial, significant changes in functional resting state connectivity occurred following a single dose of treatment, which persisted until the end of the trial. In this work, we propose an analysis framework to translate these perturbations in functional networks into predictors of clinical remission. Participants with LLD (N = 49) completed 12-weeks of treatment with venlafaxine and underwent functional magnetic resonance imaging (fMRI) at baseline and a day following a single dose of venlafaxine. Data was collected at rest as well as during an emotion reactivity task and an emotion regulation task. Remission was defined as a Montgomery-Asberg Depression Rating Scale (MADRS) ≤10 for two weeks. We computed eigenvector centrality (whole brain connectivity) and activation during the emotion regulation and emotion reactivity tasks. We employed principal components analysis, Tikhonov-regularized logistic classification, and least angle regression feature selection to predict remission by the end of the 12-week trial. We utilized ten-fold cross-validation and Receiver Operator Curves (ROC) curve analysis. To determine task-region pairs that significantly contributed to the algorithm's ability to predict remission, we used permutation testing. Using the fMRI data at both baseline and after the first dose of treatment yielded a sensitivity of 72% and a specificity of 68% (AUC = 0.77), a 15% increase in accuracy over baseline MADRS. In general, the accuracy at baseline was further improved by using the change in activation following a single dose. Activation of the frontal cortex, hippocampus, parahippocampus, caudate, thalamus, medial temporal cortex, middle cingulate, and visual cortex predicted treatment remission. Acute, dynamic trajectories of functional imaging metrics in response to a pharmacological intervention are a valuable tool for predicting treatment response in late-life depression and elucidating the mechanism of pharmacological therapies in the context of the brain's functional architecture.

Original languageEnglish (US)
Pages (from-to)831-839
Number of pages9
JournalNeuroImage: Clinical
Volume19
DOIs
StatePublished - Jan 1 2018
Externally publishedYes

Keywords

  • fMRI
  • LLD
  • Prediction

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Neurology
  • Clinical Neurology
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Acute trajectories of neural activation predict remission to pharmacotherapy in late-life depression'. Together they form a unique fingerprint.

Cite this