TY - GEN
T1 - Achieving quasi-isothermal air compression with multistage compressors for large-scale energy storage
AU - Wang, Kai
AU - Li, Peiwen
AU - Arabyan, Ara
PY - 2013
Y1 - 2013
N2 - The round trip efficiency of compressed air for energy storage is greatly limited by the significant increase in the temperature of the compressed air (and the resulting heat loss) in high-ratio adiabatic compression. This paper introduces a multi-stage compression scheme with low-compression-ratio compressors and inter-compressor natural convection cooling resulting in a quasi-isothermal compression process that can be useful for large-scale energy storage. When many low pressure ratio compressors work inline, a high overall compression ratio can be achieved with high efficiency. The quasi-isothermally compressed air can then be expanded adiabatically in turbines to generate power with the addition of thermal energy, from either fuel or a solar thermal source. This paper presents mathematical models of such an energy storage system and discusses its round-trip performance with different operating schemes.
AB - The round trip efficiency of compressed air for energy storage is greatly limited by the significant increase in the temperature of the compressed air (and the resulting heat loss) in high-ratio adiabatic compression. This paper introduces a multi-stage compression scheme with low-compression-ratio compressors and inter-compressor natural convection cooling resulting in a quasi-isothermal compression process that can be useful for large-scale energy storage. When many low pressure ratio compressors work inline, a high overall compression ratio can be achieved with high efficiency. The quasi-isothermally compressed air can then be expanded adiabatically in turbines to generate power with the addition of thermal energy, from either fuel or a solar thermal source. This paper presents mathematical models of such an energy storage system and discusses its round-trip performance with different operating schemes.
UR - http://www.scopus.com/inward/record.url?scp=84892958534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84892958534&partnerID=8YFLogxK
U2 - 10.1115/ES2013-18008
DO - 10.1115/ES2013-18008
M3 - Conference contribution
AN - SCOPUS:84892958534
SN - 9780791855515
T3 - ASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, ES 2013
BT - ASME 2013 7th Int. Conf. on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conf. and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, ES 2013
T2 - ASME 2013 7th International Conference on Energy Sustainability, ES 2013 Collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
Y2 - 14 July 2013 through 19 July 2013
ER -