Abundances of stars with planets: Trends with condensation temperature

Simon C. Schuler, Davin Flateau, Katia Cunha, Jeremy R. King, Luan Ghezzi, Verne V. Smith

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Precise abundances of 18 elements have been derived for 10 stars known to host giant planets from high signal-to-noise ratio, high-resolution echelle spectroscopy. Internal uncertainties in the derived abundances are typically ≲ 0.05dex. The stars in our sample have all been previously shown to have abundances that correlate with the condensation temperature (Tc) of the elements in the sense of increasing abundances with increasing T c; these trends have been interpreted as evidence that the stars may have accreted H-depleted planetary material. Our newly derived abundances also correlate positively with Tc, although slopes of linear least-square fits to the [m/H]-Tc relations for all but two stars are smaller here than in previous studies. When considering the refractory elements (T c >900 K) only, which may be more sensitive to planet formation processes, the sample can be separated into a group with positive slopes (four stars) and a group with flat or negative slopes (six stars). The four stars with positive slopes have very close-in giant planets (three at 0.05 AU) and slopes that fall above the general Galactic chemical evolution trend. We suggest that these stars have accreted refractory-rich planet material but not to the extent that would increase significantly the overall stellar metallicity. The flat or negative slopes of the remaining six stars are consistent with recent suggestions of a planet formation signature, although we show that the trends may be the result of Galactic chemical evolution.

Original languageEnglish (US)
Article number55
JournalAstrophysical Journal
Volume732
Issue number1
DOIs
StatePublished - May 1 2011
Externally publishedYes

Keywords

  • lanetary systems
  • planets and satellites: formation
  • stars: abundances
  • stars: atmospheres Online-only material: machine-readable tables

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Abundances of stars with planets: Trends with condensation temperature'. Together they form a unique fingerprint.

Cite this