Absence of Long-Range Magnetic Ordering in a Trirutile High-Entropy Oxide (Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)Ta1.92O6−δ

Gina Angelo, Liana Klivansky, Jeremy G. Philbrick, Tai Kong, Jian Zhang, Xin Gui

Research output: Contribution to journalArticlepeer-review

Abstract

Functionalities of solid-state materials are usually considered to be dependent on their crystal structures. The limited structural types observed in the emerging high-entropy oxides put constraints on the exploration of their physical properties and potential applications. Herein, we synthesized the first high-entropy oxide in a trirutile structure, (Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)Ta1.92O6−δ, and investigated its magnetism. The phase purity and high-entropy nature were confirmed by powder X-ray diffraction and energy-dispersive spectroscopy, respectively. X-ray photoelectron spectroscopy indicated divalent Mn, Co, Ni, and Cu along with trivalent Fe. Magnetic property measurements showed antiferromagnetic coupling and potential short-range magnetic ordering below ∼4 K. The temperature-dependent heat capacity data measured under zero and high magnetic fields confirmed the lack of long-range magnetic ordering and a possible low-temperature phonon excitation. The discovery of the first trirutile high-entropy oxide opens a new pathway for studying the relationship between the highly disordered atomic arrangement and magnetic interaction. Furthermore, it provides a new direction for exploring the functionalities of high-entropy oxides.

Original languageEnglish (US)
Pages (from-to)3196-3202
Number of pages7
JournalInorganic Chemistry
Volume64
Issue number7
DOIs
StatePublished - Feb 24 2025

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Absence of Long-Range Magnetic Ordering in a Trirutile High-Entropy Oxide (Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)Ta1.92O6−δ'. Together they form a unique fingerprint.

Cite this