A visual motion detecting module for dragonfly-controlled robots

Thuy T. Pham, Charles M. Higgins

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

When imitating biological sensors, we have not completely understood the early processing of the input to reproduce artificially. Building hybrid systems with both artificial and real biological components is a promising solution. For example, when a dragonfly is used as a living sensor, the early processing of visual information is performed fully in the brain of the dragonfly. The only significant remaining tasks are recording and processing neural signals in software and/or hardware. Based on existing works which focused on recording neural signals, this paper proposes a software application of neural information processing to design a visual processing module for dragonfly hybrid bio-robots. After a neural signal is recorded in real-time, the action potentials can be detected and matched with predefined templates to detect when and which descending neurons fire. The output of the proposed system will be used to control other parts of the robot platform.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1666-1669
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'A visual motion detecting module for dragonfly-controlled robots'. Together they form a unique fingerprint.

Cite this