A unique class of Zn2+-binding serine-based PBPs underlies cephalosporin resistance and sporogenesis in Clostridioides difficile

Michael D. Sacco, Shaohui Wang, Swamy R. Adapa, Xiujun Zhang, Eric M. Lewandowski, Maura V. Gongora, Dimitra Keramisanou, Zachary D. Atlas, Julia A. Townsend, Jean R. Gatdula, Ryan T. Morgan, Lauren R. Hammond, Michael T. Marty, Jun Wang, Prahathees J. Eswara, Ioannis Gelis, Rays H.Y. Jiang, Xingmin Sun, Yu Chen

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Treatment with β-lactam antibiotics, particularly cephalosporins, is a major risk factor for Clostridioides difficile infection. These broad-spectrum antibiotics irreversibly inhibit penicillin-binding proteins (PBPs), which are serine-based enzymes that assemble the bacterial cell wall. However, C. difficile has four different PBPs (PBP1-3 and SpoVD) with various roles in growth and spore formation, and their specific links to β-lactam resistance in this pathogen are underexplored. Here, we show that PBP2 (known to be essential for vegetative growth) is the primary bactericidal target for β-lactams in C. difficile. PBP2 is insensitive to cephalosporin inhibition, and this appears to be the main basis for cephalosporin resistance in this organism. We determine crystal structures of C. difficile PBP2, alone and in complex with β-lactams, revealing unique features including ligand-induced conformational changes and an active site Zn2+-binding motif that influences β-lactam binding and protein stability. The Zn2+-binding motif is also present in C. difficile PBP3 and SpoVD (which are known to be essential for sporulation), as well as in other bacterial taxa including species living in extreme environments and the human gut. We speculate that this thiol-containing motif and its cognate Zn2+ might function as a redox sensor to regulate cell wall synthesis for survival in adverse or anaerobic environments.

Original languageEnglish (US)
Article number4370
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A unique class of Zn2+-binding serine-based PBPs underlies cephalosporin resistance and sporogenesis in Clostridioides difficile'. Together they form a unique fingerprint.

Cite this