TY - JOUR
T1 - A TEST of COSMOLOGICAL MODELS USING HIGH-z MEASUREMENTS of H(z)
AU - Melia, Fulvio
AU - McClintock, Thomas M.
N1 - Publisher Copyright:
© 2015. The American Astronomical Society. All rights reserved.
PY - 2015/10/1
Y1 - 2015/10/1
N2 - The recently constructed Hubble diagram using a combined sample of SNLS and SDSS-II SNe Ia, and an application of the Alcock-Paczyński (AP) test using model-independent Baryon Acoustic Oscillation (BAO) data, have suggested that the principal constraint underlying the cosmic expansion is the total equation-of-state of the cosmic fluid, rather than that of its dark energy. These studies have focused on the critical redshift range (0 ≲ z ≲ 2) within which the transition from decelerated to accelerated expansion is thought to have occurred, and they suggest that the cosmic fluid has zero active mass, consistent with a constant expansion rate. The evident impact of this conclusion on cosmological theory calls for an independent confirmation. In this paper, we carry out this crucial one-on-one comparison between the Rh = ct universe (a Friedmann-Robertson-Walker cosmology with zero active mass) and wCDM/ΛCDM, using the latest high-z measurements of H(z). Whereas the SNe Ia yield the integrated luminosity distance, while the AP diagnostic tests the geometry of the universe, the Hubble parameter directly samples the expansion rate itself. We find that the model-independent cosmic chronometer data prefer Rh = ct over wCDM/ΛCDM with a Bayes Information Criterion likelihood of ∼95% versus only ∼5%, in strong support of the earlier SNe Ia and AP results. This contrasts with a recent analysis of H(z) data based solely on BAO measurements which, however, strongly depend on the assumed cosmology. We discuss why the latter approach is inappropriate for model comparisons, and emphasize again the need for truly model-independent observations to be used in cosmological tests.
AB - The recently constructed Hubble diagram using a combined sample of SNLS and SDSS-II SNe Ia, and an application of the Alcock-Paczyński (AP) test using model-independent Baryon Acoustic Oscillation (BAO) data, have suggested that the principal constraint underlying the cosmic expansion is the total equation-of-state of the cosmic fluid, rather than that of its dark energy. These studies have focused on the critical redshift range (0 ≲ z ≲ 2) within which the transition from decelerated to accelerated expansion is thought to have occurred, and they suggest that the cosmic fluid has zero active mass, consistent with a constant expansion rate. The evident impact of this conclusion on cosmological theory calls for an independent confirmation. In this paper, we carry out this crucial one-on-one comparison between the Rh = ct universe (a Friedmann-Robertson-Walker cosmology with zero active mass) and wCDM/ΛCDM, using the latest high-z measurements of H(z). Whereas the SNe Ia yield the integrated luminosity distance, while the AP diagnostic tests the geometry of the universe, the Hubble parameter directly samples the expansion rate itself. We find that the model-independent cosmic chronometer data prefer Rh = ct over wCDM/ΛCDM with a Bayes Information Criterion likelihood of ∼95% versus only ∼5%, in strong support of the earlier SNe Ia and AP results. This contrasts with a recent analysis of H(z) data based solely on BAO measurements which, however, strongly depend on the assumed cosmology. We discuss why the latter approach is inappropriate for model comparisons, and emphasize again the need for truly model-independent observations to be used in cosmological tests.
KW - cosmological parameters
KW - cosmology: observations
KW - cosmology: theory
KW - distance scale
KW - galaxies: general
UR - http://www.scopus.com/inward/record.url?scp=84946846773&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84946846773&partnerID=8YFLogxK
U2 - 10.1088/0004-6256/150/4/119
DO - 10.1088/0004-6256/150/4/119
M3 - Article
AN - SCOPUS:84946846773
SN - 0004-6256
VL - 150
JO - Astronomical Journal
JF - Astronomical Journal
IS - 4
M1 - 119
ER -