A SysML-based simulation model aggregation framework for seedling propagation system

Chao Meng, Sojung Kim, Young Jun Son, Chieri Kubota

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

This paper proposes a Systems Modeling Language (SysML)-based simulation model aggregation framework to develop aggregated simulation models with high accuracy. The framework consists of three major steps: 1) system conceptual modeling, 2) simulation modeling, and 3) additive regression model-based parameter estimation. SysML is first used to construct the system conceptual model for a generic seedling propagation system in terms of system structure and activities in a hierarchical manner (i.e. low, medium and high levels). Simulation models conforming to the conceptual model are then constructed in Arena. An additive regression model-based approach is proposed to estimate parameters for the aggregated simulation model. The proposed framework is demonstrated via one of the largest grafted seedling propagation systems in North America. The results reveal that 1) the proposed framework allows us to construct accurate but computationally affordable simulation models for seedling propagation system, and 2) model aggregation increases the randomness of simulation outputs.

Original languageEnglish (US)
Title of host publicationProceedings of the 2013 Winter Simulation Conference - Simulation
Subtitle of host publicationMaking Decisions in a Complex World, WSC 2013
Pages2180-2191
Number of pages12
DOIs
StatePublished - 2013
Event2013 43rd Winter Simulation Conference - Simulation: Making Decisions in a Complex World, WSC 2013 - Washington, DC, United States
Duration: Dec 8 2013Dec 11 2013

Publication series

NameProceedings of the 2013 Winter Simulation Conference - Simulation: Making Decisions in a Complex World, WSC 2013

Other

Other2013 43rd Winter Simulation Conference - Simulation: Making Decisions in a Complex World, WSC 2013
Country/TerritoryUnited States
CityWashington, DC
Period12/8/1312/11/13

ASJC Scopus subject areas

  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'A SysML-based simulation model aggregation framework for seedling propagation system'. Together they form a unique fingerprint.

Cite this