TY - JOUR
T1 - A survey of deuterated ammonia in the Cepheus star-forming region L1251
AU - Galloway-Sprietsma, Maria
AU - Shirley, Yancy L.
AU - Di Francesco, James
AU - Keown, Jared
AU - Scibelli, Samantha
AU - Sipilä, Olli
AU - Smullen, Rachel
N1 - Publisher Copyright:
© 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Understanding the chemical processes during starless core and prestellar core evolution is an important step in understanding the initial stages of star and disc formation. This project is a study of deuterated ammonia, o-NH2D, in the L1251 star-forming region towards Cepheus. Twenty-two dense cores (20 of which are starless or prestellar, and two of which have a protostar), previously identified by p-NH3 (1,1) observations, were targeted with the 12m Arizona Radio Observatory telescope on Kitt Peak. o-NH2D J$_{\rm {K_a} \rm {K_c}}^{\pm } =$$1_{11}^{+} \rightarrow 1_{01}^{-}$ was detected in 13 (59 per cent) of the NH3-detected cores with a median sensitivity of $\sigma _{T_{mb}} = 17$ mK. All cores detected in o-NH2D at this sensitivity have p-NH3 column densities >1014 cm-2. The o-NH2D column densities were calculated using the constant excitation temperature (CTEX) approximation while correcting for the filling fraction of the NH3 source size. The median deuterium fraction was found to be 0.11 (including 3σ upper limits). However, there are no strong, discernible trends in plots of deuterium fraction with any physical or evolutionary variables. If the cores in L1251 have similar initial chemical conditions, then this result is evidence of the cores physically evolving at different rates.
AB - Understanding the chemical processes during starless core and prestellar core evolution is an important step in understanding the initial stages of star and disc formation. This project is a study of deuterated ammonia, o-NH2D, in the L1251 star-forming region towards Cepheus. Twenty-two dense cores (20 of which are starless or prestellar, and two of which have a protostar), previously identified by p-NH3 (1,1) observations, were targeted with the 12m Arizona Radio Observatory telescope on Kitt Peak. o-NH2D J$_{\rm {K_a} \rm {K_c}}^{\pm } =$$1_{11}^{+} \rightarrow 1_{01}^{-}$ was detected in 13 (59 per cent) of the NH3-detected cores with a median sensitivity of $\sigma _{T_{mb}} = 17$ mK. All cores detected in o-NH2D at this sensitivity have p-NH3 column densities >1014 cm-2. The o-NH2D column densities were calculated using the constant excitation temperature (CTEX) approximation while correcting for the filling fraction of the NH3 source size. The median deuterium fraction was found to be 0.11 (including 3σ upper limits). However, there are no strong, discernible trends in plots of deuterium fraction with any physical or evolutionary variables. If the cores in L1251 have similar initial chemical conditions, then this result is evidence of the cores physically evolving at different rates.
KW - ISM: abundances
KW - ISM: evolution
KW - ISM: molecules
UR - http://www.scopus.com/inward/record.url?scp=85140899716&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140899716&partnerID=8YFLogxK
U2 - 10.1093/mnras/stac2084
DO - 10.1093/mnras/stac2084
M3 - Article
AN - SCOPUS:85140899716
SN - 0035-8711
VL - 515
SP - 5219
EP - 5234
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -