Abstract
We approximate the energy levels of the anharmonic oscillator with any coupling constant by eigenvalues λj(g,T) of the operator - d2/dx2 + x2 + gVT(x) with V T(x) = x4 when |x|≤T and VT(x) = T 4 when |x| > T. The functions λj(g,T) are holomorphic with respect to g in a neighborhood of the non-negative half-axis. The conformal transformation maps this neighborhood onto the unit circle of the complex plane. It gives the summation method for the Rayleigh-Schrödinger series for every g>0.
Original language | English (US) |
---|---|
Pages (from-to) | 961-964 |
Number of pages | 4 |
Journal | Journal of Mathematical Physics |
Volume | 26 |
Issue number | 5 |
DOIs | |
State | Published - 1985 |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics