TY - JOUR
T1 - A state-selective multireference coupled-cluster theory employing the single-reference formalism
AU - Piecuch, Piotr
AU - Oliphant, Nevin
AU - Adamowicz, Ludwik
PY - 1993
Y1 - 1993
N2 - A new state-selective multireference (MR) coupled-cluster (CC) method exploiting the single-reference (SR) particle-hole formalism is described. It is an extension of a simple two-reference formalism, which we presented in our earlier paper [N. Oliphant and L. Adamowicz, J. Chem. Phys. 94, 1229 (1991)], and a rigorous formulation of another method of ours, which we obtained as an approximation of the SRCC approach truncated at triple excitations (SRCCSDT) [N. Oliphant and L. Adamowicz, J. Chem. Phys. 96, 3739 (1992)]. The size extensivity of the resulting correlation energies is achieved by employing a SRCC-like ansatz for the multideterminantal wave function. General considerations are supplemented by suggesting a hierarchy of approximate schemes, with the MRCCSD approach (MRCC approach truncated at double excitations from the reference determinants) representing the most important one. Our state-selective MRCCSD theory emerges through a suitable selection of the most essential cluster components appearing in the full SRCCSDTQ method (SRCC method truncated at quadruple excitations), when the latter is applied to quasidegenerate states. The complete set of equations describing our MRCCSD formalism is presented and the possibility of the recursive intermediate factorization [S. A. Kucharski and R. J. Bartlett, Theor. Chim. Acta 80, 387 (1991)] of our approach, leading to an efficient computer algorithm, is discussed.
AB - A new state-selective multireference (MR) coupled-cluster (CC) method exploiting the single-reference (SR) particle-hole formalism is described. It is an extension of a simple two-reference formalism, which we presented in our earlier paper [N. Oliphant and L. Adamowicz, J. Chem. Phys. 94, 1229 (1991)], and a rigorous formulation of another method of ours, which we obtained as an approximation of the SRCC approach truncated at triple excitations (SRCCSDT) [N. Oliphant and L. Adamowicz, J. Chem. Phys. 96, 3739 (1992)]. The size extensivity of the resulting correlation energies is achieved by employing a SRCC-like ansatz for the multideterminantal wave function. General considerations are supplemented by suggesting a hierarchy of approximate schemes, with the MRCCSD approach (MRCC approach truncated at double excitations from the reference determinants) representing the most important one. Our state-selective MRCCSD theory emerges through a suitable selection of the most essential cluster components appearing in the full SRCCSDTQ method (SRCC method truncated at quadruple excitations), when the latter is applied to quasidegenerate states. The complete set of equations describing our MRCCSD formalism is presented and the possibility of the recursive intermediate factorization [S. A. Kucharski and R. J. Bartlett, Theor. Chim. Acta 80, 387 (1991)] of our approach, leading to an efficient computer algorithm, is discussed.
UR - http://www.scopus.com/inward/record.url?scp=0000369089&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000369089&partnerID=8YFLogxK
U2 - 10.1063/1.466179
DO - 10.1063/1.466179
M3 - Article
AN - SCOPUS:0000369089
SN - 0021-9606
VL - 99
SP - 1875
EP - 1900
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 3
ER -