TY - JOUR
T1 - A spectroscopically confirmed excess of 24 μm sources in a super galaxy group at z = 0.37
T2 - Enhanced dusty star formation relative to the cluster and field environment
AU - Tran, Kim Vy H.
AU - Saintonge, Amélie
AU - Moustakas, John
AU - Bai, Lei
AU - Gonzalez, Anthony H.
AU - Holden, Bradford P.
AU - Zaritsky, Dennis
AU - Kautsch, Stefan J.
PY - 2009
Y1 - 2009
N2 - To trace how dust-obscured star formation varies with environment, we compare the fraction of 24 μm sources in a super galaxy group to the field and a rich galaxy cluster at z ∼ 0.35. We draw on multi-wavelength observations9Based on observations made with (1) The ESO telescopes at Paranal Observatories under program IDs 072.A-0367, 076.B-0362, 078.B-0409; (2) the NASA/ESA Hubble Space Telescope (GO-10499); STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555; (3) the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA; support for this work was provided by NASA through an award issued by JPL/Caltech (GO-20683); (4) the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060; and (5) the Magellan 6.5 m telescope operated by OCIW. that combine Hubble, Chandra, and Spitzer imaging with extensive optical spectroscopy (>1800 redshifts) to isolate galaxies in each environment and thus ensure a uniform analysis. We focus on the four galaxy groups (σ1D = 303-580 km s -1) in supergroup 1120-12 that will merge to form a galaxy cluster comparable in mass to Coma. We find that (1) the fraction of supergroup galaxies with SFRIR ≥ 3 M ⊙ yr-1 is 4 times higher than in the cluster (32% ± 5% versus 7% 2%); (2) the supergroup's infrared luminosity function confirms that it has a higher density of IR members compared to the cluster and includes bright IR sources (log(L IR)[erg s-1] >45) not found in galaxy clusters at z ≲ 0.35; and (3) there is a strong trend of decreasing 24 μm fraction with increasing galaxy density, i.e., an infrared-density relation, not observed in the cluster. These dramatic differences are surprising because the early-type fraction in the supergroup is already as high as in clusters, i.e., the timescales for morphological transformation cannot be strongly coupled to when the star formation is completely quenched. The supergroup has a significant fraction (17%) of luminous, low-mass (10.0 < log(M *)[M ⊙] < 10.6), SFRIR ≥ 3 M ⊙ yr-1 members that are outside the group cores (R proj ≥ 0.5Mpc); once their star formation is quenched, most will evolve into faint red galaxies. Our analysis indicates that the supergroup's 24 μm population also differs from that in the field: (1) despite the supergroup having twice the fraction of E/S0s as the field, the fraction of SFRIR ≥ 3 M ⊙ yr-1 galaxies is comparable in both environments, and (2) the supergroup's IR luminosity function has a higher L*IR than that previously measured for the field.
AB - To trace how dust-obscured star formation varies with environment, we compare the fraction of 24 μm sources in a super galaxy group to the field and a rich galaxy cluster at z ∼ 0.35. We draw on multi-wavelength observations9Based on observations made with (1) The ESO telescopes at Paranal Observatories under program IDs 072.A-0367, 076.B-0362, 078.B-0409; (2) the NASA/ESA Hubble Space Telescope (GO-10499); STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555; (3) the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA; support for this work was provided by NASA through an award issued by JPL/Caltech (GO-20683); (4) the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060; and (5) the Magellan 6.5 m telescope operated by OCIW. that combine Hubble, Chandra, and Spitzer imaging with extensive optical spectroscopy (>1800 redshifts) to isolate galaxies in each environment and thus ensure a uniform analysis. We focus on the four galaxy groups (σ1D = 303-580 km s -1) in supergroup 1120-12 that will merge to form a galaxy cluster comparable in mass to Coma. We find that (1) the fraction of supergroup galaxies with SFRIR ≥ 3 M ⊙ yr-1 is 4 times higher than in the cluster (32% ± 5% versus 7% 2%); (2) the supergroup's infrared luminosity function confirms that it has a higher density of IR members compared to the cluster and includes bright IR sources (log(L IR)[erg s-1] >45) not found in galaxy clusters at z ≲ 0.35; and (3) there is a strong trend of decreasing 24 μm fraction with increasing galaxy density, i.e., an infrared-density relation, not observed in the cluster. These dramatic differences are surprising because the early-type fraction in the supergroup is already as high as in clusters, i.e., the timescales for morphological transformation cannot be strongly coupled to when the star formation is completely quenched. The supergroup has a significant fraction (17%) of luminous, low-mass (10.0 < log(M *)[M ⊙] < 10.6), SFRIR ≥ 3 M ⊙ yr-1 members that are outside the group cores (R proj ≥ 0.5Mpc); once their star formation is quenched, most will evolve into faint red galaxies. Our analysis indicates that the supergroup's 24 μm population also differs from that in the field: (1) despite the supergroup having twice the fraction of E/S0s as the field, the fraction of SFRIR ≥ 3 M ⊙ yr-1 galaxies is comparable in both environments, and (2) the supergroup's IR luminosity function has a higher L*IR than that previously measured for the field.
KW - Galaxies: Clusters: general
KW - Galaxies: Clusters: individual (SG1120-1202)
KW - Galaxies: Luminosity function, mass function
KW - Galaxies: Starburst
KW - Galaxies: evolution
KW - Infrared: Galaxies
UR - http://www.scopus.com/inward/record.url?scp=70649091280&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70649091280&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/705/1/809
DO - 10.1088/0004-637X/705/1/809
M3 - Article
AN - SCOPUS:70649091280
SN - 0004-637X
VL - 705
SP - 809
EP - 820
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
ER -