TY - JOUR
T1 - A small and vigorous black hole in the early Universe
AU - Maiolino, Roberto
AU - Scholtz, Jan
AU - Witstok, Joris
AU - Carniani, Stefano
AU - D’Eugenio, Francesco
AU - de Graaff, Anna
AU - Übler, Hannah
AU - Tacchella, Sandro
AU - Curtis-Lake, Emma
AU - Arribas, Santiago
AU - Bunker, Andrew
AU - Charlot, Stéphane
AU - Chevallard, Jacopo
AU - Curti, Mirko
AU - Looser, Tobias J.
AU - Maseda, Michael V.
AU - Rawle, Timothy D.
AU - Rodríguez del Pino, Bruno
AU - Willott, Chris J.
AU - Egami, Eiichi
AU - Eisenstein, Daniel J.
AU - Hainline, Kevin N.
AU - Robertson, Brant
AU - Williams, Christina C.
AU - Willmer, Christopher N.A.
AU - Baker, William M.
AU - Boyett, Kristan
AU - DeCoursey, Christa
AU - Fabian, Andrew C.
AU - Helton, Jakob M.
AU - Ji, Zhiyuan
AU - Jones, Gareth C.
AU - Kumari, Nimisha
AU - Laporte, Nicolas
AU - Nelson, Erica J.
AU - Perna, Michele
AU - Sandles, Lester
AU - Shivaei, Irene
AU - Sun, Fengwu
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/3/7
Y1 - 2024/3/7
N2 - Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang1–3. Models consider different seeding and accretion scenarios4–7, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the [Neiv]λ2423 and CII*λ1335 transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 109 cm−3, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIVλ1549 absorption trough, tracing an outflow with velocity 800−1,000 km s−1, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of log(MBH/M⊙)=6.2±0.3, accreting at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance.
AB - Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang1–3. Models consider different seeding and accretion scenarios4–7, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the [Neiv]λ2423 and CII*λ1335 transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 109 cm−3, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIVλ1549 absorption trough, tracing an outflow with velocity 800−1,000 km s−1, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of log(MBH/M⊙)=6.2±0.3, accreting at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance.
UR - http://www.scopus.com/inward/record.url?scp=85186199359&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85186199359&partnerID=8YFLogxK
U2 - 10.1038/s41586-024-07052-5
DO - 10.1038/s41586-024-07052-5
M3 - Article
C2 - 38232944
AN - SCOPUS:85186199359
SN - 0028-0836
VL - 627
SP - 59
EP - 63
JO - Nature
JF - Nature
IS - 8002
ER -