Abstract
We propose a scalable approach for making inference about latent spaces of large networks. With a succinct representation of networks as a bag of triangular motifs, a parsimonious statistical model, and an efficient stochastic variational inference algorithm, we are able to analyze real networks with over a million vertices and hundreds of latent roles on a single machine in a matter of hours, a setting that is out of reach for many existing methods. When compared to the state-of-the-art probabilistic approaches, our method is several orders of magnitude faster, with competitive or improved accuracy for latent space recovery and link prediction.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
State | Published - 2013 |
Event | 27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States Duration: Dec 5 2013 → Dec 10 2013 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing