A robust approach to sequential information theoretic planning

Sue Zheng, Jason Pacheco, John W. Fisher

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

In many sequential planning applications a natural approach to generating high quality plans is to maximize an information reward such as mutual information (MI). Unfortunately, MI lacks a closed form in all but trivial models, and so must be estimated. In applications where the cost of plan execution is expensive, one desires planning estimates which admit theoretical guarantees. Through the use of robust M-estimators we obtain bounds on absolute deviation of estimated MI. Moreover, we propose a sequential algorithm which integrates inference and planning by maximally reusing particles in each stage. We validate the utility of using robust estimators in the sequential approach on a Gaussian Markov Random Field wherein information measures have a closed form. Lastly, we demonstrate the benefits of our integrated approach in the context of sequential experiment design for inferring causal regulatory networks from gene expression levels. Our method shows improvements over a recent method which selects intervention experiments based on the same MI objective.

Original languageEnglish (US)
Title of host publication35th International Conference on Machine Learning, ICML 2018
EditorsAndreas Krause, Jennifer Dy
PublisherInternational Machine Learning Society (IMLS)
Pages9476-9489
Number of pages14
ISBN (Electronic)9781510867963
StatePublished - 2018
Externally publishedYes
Event35th International Conference on Machine Learning, ICML 2018 - Stockholm, Sweden
Duration: Jul 10 2018Jul 15 2018

Publication series

Name35th International Conference on Machine Learning, ICML 2018
Volume13

Other

Other35th International Conference on Machine Learning, ICML 2018
Country/TerritorySweden
CityStockholm
Period7/10/187/15/18

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'A robust approach to sequential information theoretic planning'. Together they form a unique fingerprint.

Cite this