TY - JOUR
T1 - A roadmap for Generalized Plane Waves and their interpolation properties
AU - Imbert-Gérard, Lise Marie
AU - Sylvand, Guillaume
N1 - Funding Information:
This material is based upon work supported by the National Science Foundation under Grants No. DMS-1818747 and DMS-2105487.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2021/9
Y1 - 2021/9
N2 - This work focuses on the study of partial differential equation (PDE) based basis function for Discontinuous Galerkin methods to solve numerically wave-related boundary value problems with variable coefficients. To tackle problems with constant coefficients, wave-based methods have been widely studied in the literature: they rely on the concept of Trefftz functions, i.e. local solutions to the governing PDE, using oscillating basis functions rather than polynomial functions to represent the numerical solution. Generalized Plane Waves (GPWs) are an alternative developed to tackle problems with variable coefficients, in which case Trefftz functions are not available. In a similar way, they incorporate information on the PDE, however they are only approximate Trefftz functions since they don’t solve the governing PDE exactly, but only an approximated PDE. Considering a new set of PDEs beyond the Helmholtz equation, we propose to set a roadmap for the construction and study of local interpolation properties of GPWs. Identifying carefully the various steps of the process, we provide an algorithm to summarize the construction of these functions, and establish necessary conditions to obtain high order interpolation properties of the corresponding basis.
AB - This work focuses on the study of partial differential equation (PDE) based basis function for Discontinuous Galerkin methods to solve numerically wave-related boundary value problems with variable coefficients. To tackle problems with constant coefficients, wave-based methods have been widely studied in the literature: they rely on the concept of Trefftz functions, i.e. local solutions to the governing PDE, using oscillating basis functions rather than polynomial functions to represent the numerical solution. Generalized Plane Waves (GPWs) are an alternative developed to tackle problems with variable coefficients, in which case Trefftz functions are not available. In a similar way, they incorporate information on the PDE, however they are only approximate Trefftz functions since they don’t solve the governing PDE exactly, but only an approximated PDE. Considering a new set of PDEs beyond the Helmholtz equation, we propose to set a roadmap for the construction and study of local interpolation properties of GPWs. Identifying carefully the various steps of the process, we provide an algorithm to summarize the construction of these functions, and establish necessary conditions to obtain high order interpolation properties of the corresponding basis.
UR - http://www.scopus.com/inward/record.url?scp=85113790571&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113790571&partnerID=8YFLogxK
U2 - 10.1007/s00211-021-01220-9
DO - 10.1007/s00211-021-01220-9
M3 - Article
AN - SCOPUS:85113790571
SN - 0029-599X
VL - 149
SP - 87
EP - 137
JO - Numerische Mathematik
JF - Numerische Mathematik
IS - 1
ER -