A portable imaging Mueller matrix polarimeter based on a spatio-Temporal modulation approach: Theory and implementation

Israel J. Vaughn, Oscar G. Rodríguez-Herrera, Mohan Xu, J. S. Tyo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations


Imaging polarimeters have been largely used for remote sensing tasks, and most imaging polarimeters are division of time or division of space Stokes polarimeters. Imaging Mueller matrix polarimeters have just begun to be constructed which can take data quickly enough to be useful. We have constructed a Mueller matrix (active) polarimeter utilizing a hybrid modulation approach (modulated in both time and space) based on a micropo-larizer array camera and rotating retarders. The hybrid approach allows for an increase in temporal bandwidth (instrument speed) at the expense of spatial bandwidth (sensor resolution). We present the hybrid approach and associated reconstruction schemes here. Additionally, we introduce the instrument design and some preliminary results and data from the instrument.

Original languageEnglish (US)
Title of host publicationPolarization Science and Remote Sensing VII
EditorsJoseph A. Shaw, Daniel A. LeMaster
ISBN (Electronic)9781628417791
StatePublished - 2015
EventPolarization Science and Remote Sensing VII - San Diego, United States
Duration: Aug 11 2015Aug 12 2015

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherPolarization Science and Remote Sensing VII
Country/TerritoryUnited States
CitySan Diego


  • Mueller matrix
  • active polarimetry
  • linear systems
  • modulated polarimetry
  • polarimetry

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'A portable imaging Mueller matrix polarimeter based on a spatio-Temporal modulation approach: Theory and implementation'. Together they form a unique fingerprint.

Cite this