TY - JOUR
T1 - A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes
AU - Pyron, R. Alexander
AU - Burbrink, Frank T.
AU - Wiens, John J.
N1 - Funding Information:
We thank the many researchers who made this study possible through their detailed studies of squamate phylogeny with a (mostly) shared set of molecular markers, and uploading their sequence data to GenBank. We thank E. Paradis, J. Lombardo T. Guiher, R. Walsh, and P. Muzio for computational assistance, T. Gamble, D. Frost, D. Cannatella, H. Zaher, F. Grazziotin, P. Uetz, T. Jackman, and A. Bauer for taxonomic advice, and A. Larson, M. Vences, and five anonymous reviewers for comments on this manuscript. The research was supported in part by the U.S. National Science Foundation, including a Bioinformatics Postdoctoral grant to R.A.P. (DBI-0905765), an AToL grant to J.J.W. (EF-0334923), and grants to the CUNY HPCC (CNS-0958379 and CNS-0855217).
PY - 2013
Y1 - 2013
N2 - Background: The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results: The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions: We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes.
AB - Background: The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results: The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions: We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes.
KW - Amphisbaenia
KW - Lacertilia
KW - Likelihood support measures
KW - Missing data
KW - Phylogenetics
KW - Reptilia
KW - Serpentes
KW - Squamata
KW - Supermatrices
KW - Systematics
UR - http://www.scopus.com/inward/record.url?scp=84876805079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876805079&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-13-93
DO - 10.1186/1471-2148-13-93
M3 - Article
C2 - 23627680
AN - SCOPUS:84876805079
SN - 1471-2148
VL - 13
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 93
ER -