Abstract
This paper discusses a Prognostics and Health Management [PHM]-based approach to implementing Human Health & Performance [HH&P] technologies. Targeted specifically are NASA’s “Autonomous Medical DecisionA. and “Integrated Biomedical InformaticsA. of “Human Health, Life Support, and Habitation SystemsA. in Technology Area 06 [TA 06] of NASA’s integrated technology roadmap [April 2012]. The proposed PHM-based implementation is to bridge PHM, an engineering discipline, to the HH&P technology domain to mitigate space travel risks by focusing on efforts to reduce countermeasure mass and volume, and drive down risks to an acceptable level. NASA’s Autonomous Medical Decision technology is based on wireless handheld devices and is a result of a necessary paradigm shift from telemedicine to HH&P autonomy. The Integrated Biomedical Informatics technology is based on Crew Electronic Health Records [CEHR], equipped with a predictive diagnostics capability developed for use by crew members rather than by healthcare professionals. This paper further explores the proposed PHM-based solutions for crew health maintenance in terms of predictive diagnostics to provide early and actionable real-time warnings to each crew member about health-related risks and impending health problems that otherwise might go undetected. The paper also discusses the paradigm’s hypothesis and its innovation methodology, as implemented with computed biomarkers. The suggested paradigm is to be validated on the International Space Station [ISS] to ensure that crew autonomy in terms of the inherent predictive capability and two-fault-tolerance of the methodology become the dominant design drivers in sustaining crew health and performance.
Original language | English (US) |
---|---|
Article number | 001 |
Journal | International Journal of Prognostics and Health Management |
Volume | 10 |
State | Published - 2019 |
Externally published | Yes |
ASJC Scopus subject areas
- Computer Science (miscellaneous)
- Civil and Structural Engineering
- Safety, Risk, Reliability and Quality
- Energy Engineering and Power Technology
- Mechanical Engineering