TY - JOUR
T1 - A novel nicotinic mechanism underlies β-amyloid-induced neuronal hyperexcitation
AU - Liu, Qiang
AU - Xie, Xitao
AU - Lukas, Ronald J.
AU - St.John, Paul A.
AU - Wu, Jie
PY - 2013/4/24
Y1 - 2013/4/24
N2 - There is a significantly elevated incidence of epilepsy in Alzheimer's disease (AD). Moreover, there is neural hyperexcitation/synchronization in transgenic mice expressing abnormal levels or forms of amyloid precursor protein and its presumed, etiopathogenic product, amyloid-β1- 42 (Aβ). However, the underlying mechanisms of how Aβ causes neuronal hyperexcitation remain unclear. Here, we report that exposure to pathologically relevant levels of Aβ induces Aβ form-dependent, concentration-dependent, and time-dependent neuronal hyperexcitation in primary cultures of mouse hippocampal neurons. Similarly, Aβ exposure increases levels of nicotinic acetylcholine receptor (nAChR) α7 subunit protein on the cell surface and α7-nAChR function, but not α7 subunit mRNA, suggesting post-translational upregulation of functional α7-nAChRs. These effects are prevented upon coexposure to brefeldin A, an inhibitor of endoplasmic reticulum-to-Golgi protein transport, consistent with an effect on trafficking ofα7 subunits and assembledα7-nAChRs to the cell surface. Aβ exposure-inducedα7-nAChR functional upregulation occurs before there is expression of neuronal hyperexcitation. Pharmacological inhibition using anα7-nAChR antagonist or genetic deletion of nAChRα7 subunits prevents induction and expression of neuronal hyperexcitation. Collectively, these results, confirmed in studies using slice cultures, indicate that functional activity and perhaps functional upregulation of α7-nAChRs are necessary for production of Aβ-induced neuronal hyperexcitation and possibly AD pathogenesis. This novel mechanism involving α7-nAChRs in mediation of Aβ effects provides potentially new therapeutic targets for treatment of AD.
AB - There is a significantly elevated incidence of epilepsy in Alzheimer's disease (AD). Moreover, there is neural hyperexcitation/synchronization in transgenic mice expressing abnormal levels or forms of amyloid precursor protein and its presumed, etiopathogenic product, amyloid-β1- 42 (Aβ). However, the underlying mechanisms of how Aβ causes neuronal hyperexcitation remain unclear. Here, we report that exposure to pathologically relevant levels of Aβ induces Aβ form-dependent, concentration-dependent, and time-dependent neuronal hyperexcitation in primary cultures of mouse hippocampal neurons. Similarly, Aβ exposure increases levels of nicotinic acetylcholine receptor (nAChR) α7 subunit protein on the cell surface and α7-nAChR function, but not α7 subunit mRNA, suggesting post-translational upregulation of functional α7-nAChRs. These effects are prevented upon coexposure to brefeldin A, an inhibitor of endoplasmic reticulum-to-Golgi protein transport, consistent with an effect on trafficking ofα7 subunits and assembledα7-nAChRs to the cell surface. Aβ exposure-inducedα7-nAChR functional upregulation occurs before there is expression of neuronal hyperexcitation. Pharmacological inhibition using anα7-nAChR antagonist or genetic deletion of nAChRα7 subunits prevents induction and expression of neuronal hyperexcitation. Collectively, these results, confirmed in studies using slice cultures, indicate that functional activity and perhaps functional upregulation of α7-nAChRs are necessary for production of Aβ-induced neuronal hyperexcitation and possibly AD pathogenesis. This novel mechanism involving α7-nAChRs in mediation of Aβ effects provides potentially new therapeutic targets for treatment of AD.
UR - http://www.scopus.com/inward/record.url?scp=84876526974&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876526974&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.3235-12.2013
DO - 10.1523/JNEUROSCI.3235-12.2013
M3 - Article
C2 - 23616534
AN - SCOPUS:84876526974
SN - 0270-6474
VL - 33
SP - 7253
EP - 7263
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 17
ER -