Abstract
Rationale: cMyBP-C (cardiac myosin-binding protein-C) is a critical regulator of heart contraction, but the mechanisms by which cMyBP-C affects actin and myosin are only partly understood. A primary obstacle is that cMyBP-C localization on thick filaments may be a key factor defining its interactions, but most in vitro studies cannot duplicate the unique spatial arrangement of cMyBP-C within the sarcomere. Objective: The goal of this study was to validate a novel hybrid genetic/protein engineering approach for rapid manipulation of cMyBP-C in sarcomeres in situ. Methods and Results: We designed a novel cut and paste approach for removal and replacement of cMyBP-C N′-terminal domains (C0-C7) in detergent-permeabilized cardiomyocytes from gene-edited Spy-C mice. Spy-C mice express a TEVp (tobacco etch virus protease) cleavage site and a SpyTag (st) between cMyBP-C domains C7 and C8. A cut is achieved using TEVp which cleaves cMyBP-C to create a soluble N′-terminal γC0C7 (endogenous [genetically encoded] N′-terminal domains C0 to C7 of cardiac myosin binding protein-C) fragment and an insoluble C′-terminal SpyTag-C8-C10 fragment that remains associated with thick filaments. Paste of new recombinant (r)C0C7 domains is achieved by a covalent bond formed between SpyCatcher (-sc; encoded at the C′-termini of recombinant proteins) and SpyTag. Results show that loss of γC0C7 reduced myofilament Ca2+ sensitivity and increased cross-bridge cycling (ktr) at submaximal [Ca2+]. Acute loss of γC0C7 also induced auto-oscillatory contractions at submaximal [Ca2+]. Ligation of rC0C7 (exogenous [recombinant] N′- terminal domains C0 to C7 of cardiac myosin binding protein-C)-sc returned pCa50 and ktr to control values and abolished oscillations, but phosphorylated (p)-rC0C7-sc did not completely rescue these effects. Conclusions: We describe a robust new approach for acute removal and replacement of cMyBP-C in situ. The method revealed a novel role for cMyBP-C N′-terminal domains to damp sarcomere-driven contractile waves (so-called spontaneous oscillatory contractions). Because phosphorylated (p)-rC0C7-sc was less effective at damping contractile oscillations, results suggest that spontaneous oscillatory contractions may contribute to enhanced contractility in response to inotropic stimuli.
Original language | English (US) |
---|---|
Pages (from-to) | 737-749 |
Number of pages | 13 |
Journal | Circulation research |
Volume | 126 |
Issue number | 6 |
DOIs | |
State | Published - Mar 13 2020 |
Keywords
- SpyCatcher
- SpyTag
- cardiac myosin binding protein-C
- cardiomyocyte
- myosin
- phosphorylation
- sarcomere
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine
- Physiology