A new pipe element for modeling three-dimensional large deformation problems

Yaqun Jiang, Ara Arabyan

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

A new straight pipe element that enables the efficient computation of large, three-dimensional deformations in pipes with circular cross-sections is presented. The new element, which supports rigid-body and constant-strain modes, is modeled using curvilinear shell coordinates and sinusoidal interpolation functions and captures all stresses except the normal stress across the shell thickness (i.e. small thickness is assumed). Euler parameters are used to describe rotational rigid-body modes and are incorporated into the element's vector of degrees of freedom. Under general loading (axial, transverse, bending and torsion), the element allows large ovalization of its cross-section and large, three-dimensional, angular changes in the orientation of its reference axis. The formulation used to derive the clement incorporates the nonlinear coupling between torsional and bending deformations. Results are presented for stresses and deformations produced by combined bending and torsional loads. A comparison of these results to corresponding quantities generated by ABAQUS using a large number of 24 degree-of-freedom shell elements indicates excellent agreement and significant gains in computational efficiency because of a reduction in number of degrees of freedom.

Original languageEnglish (US)
Pages (from-to)59-68
Number of pages10
JournalFinite Elements in Analysis and Design
Volume22
Issue number1
DOIs
StatePublished - May 1996

ASJC Scopus subject areas

  • Analysis
  • General Engineering
  • Computer Graphics and Computer-Aided Design
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'A new pipe element for modeling three-dimensional large deformation problems'. Together they form a unique fingerprint.

Cite this