TY - JOUR
T1 - A new census of dust and polycyclic aromatic hydrocarbons at z = 0.7-2 with JWST MIRI
AU - Shivaei, Irene
AU - Alberts, Stacey
AU - Florian, Michael
AU - Rieke, George
AU - Wuyts, Stijn
AU - Bodansky, Sarah
AU - Bunker, Andrew J.
AU - Cameron, Alex J.
AU - Curti, Mirko
AU - Da'eugenio, Francesco
AU - Dudzevičiūte, Ugne
AU - Ji, Zhiyuan
AU - Johnson, Benjamin D.
AU - Kramarenko, Ivan
AU - Lyu, Jianwei
AU - Matthee, Jorryt
AU - Morrison, Jane
AU - Naidu, Rohan
AU - Pérez-González, Pablo G.
AU - Reddy, Naveen
AU - Robertson, Brant
AU - Sun, Yang
AU - Tacchella, Sandro
AU - Whitaker, Katherine
AU - Williams, Christina C.
AU - Willmer, Christopher N.A.
AU - Witstok, Joris
AU - Xiao, Mengyuan
AU - Zhu, Yongda
N1 - Publisher Copyright:
© The Authors 2024.
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Aims. This paper utilises the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) to extend the observational studies of dust and polycyclic aromatic hydrocarbon (PAH) emission to a new mass and star formation rate (SFR) parameter space beyond our local Universe. The combination of fully sampled spectral energy distributions (SEDs) with multiple mid-infrared (mid-IR) bands and the unprecedented sensitivity of MIRI allows us to investigate dust obscuration and PAH behaviour from z = 0.7 up to z = 2 in typical main-sequence galaxies. Our focus is on constraining the evolution of PAH strength and the dust-obscured luminosity fraction before and during cosmic noon, the epoch of peak star formation activity in the Universe. Methods. In this study, we utilise MIRI multi-band imaging data from the SMILES survey (5 to 25 μm), complemented with NIRCam photometry from the JADES survey (1 to 5 μm), available HST photometry (0.4 to 0.9 μm), and spectroscopic redshifts from the FRESCO and JADES surveys in GOODS-S for 443 star-forming (without dominant active galactic nucleus (AGN)) galaxies at z = 0.7-2.0. This redshift range was chosen to ensure that the MIRI data cover mid-IR dust emission. Our methodology involved employing ultraviolet (UV) to IR energy balance SED fitting to robustly constrain the fraction of dust mass in PAHs and dust-obscured luminosity. Additionally, we inferred dust sizes from MIRI 15 μm imaging data, enhancing our understanding of the physical characteristics of dust within these galaxies. Results. We find a strong correlation between the fraction of dust in PAHs (PAH fraction, qPAH) with stellar mass. Moreover, the sub-sample with robust qPAH measurements (N = 216) shows a similar behaviour between qPAH and gas-phase ∼ z ∼ 0, suggesting a universal relation: qPAH is constant (∼3.4%) above a metallicity of Z ∼ 0.5 Z⊙ and decreases to < 1% at metallicities ≲0.3 Z⊙. This indicates that metallicity is a good indicator of the interstellar medium properties that affect the balance between the formation and destruction of PAHs. The lack of a redshift evolution from z ∼ 0-2 also implies that above Z ∼ 0.5 Z⊙ the PAH emission effectively traces obscured luminosity and the previous locally calibrated PAH-SFR calibrations remain applicable in this metallicity regime. We observe a strong correlation between the obscured UV luminosity fraction (ratio of obscured to total luminosity) and stellar mass. Above the s tellar mass of M∗ > 5 × 109 M⊙, on average, more than half of the emitted luminosity is obscured, while there exists a non-negligible population of lower-mass galaxies with > 50% obscured fractions. At a fixed mass, the obscured fraction correlates with SFR surface density. This is a result of higher dust covering fractions in galaxies with more compact star-forming regions. Similarly, galaxies with high IRX (IR to UV luminosity) at a given mass or UV continuum slope (β) tend to have higher ΣSFR and shallower attenuation curves, owing to their higher effective dust optical depths and more compact star-forming regions.
AB - Aims. This paper utilises the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) to extend the observational studies of dust and polycyclic aromatic hydrocarbon (PAH) emission to a new mass and star formation rate (SFR) parameter space beyond our local Universe. The combination of fully sampled spectral energy distributions (SEDs) with multiple mid-infrared (mid-IR) bands and the unprecedented sensitivity of MIRI allows us to investigate dust obscuration and PAH behaviour from z = 0.7 up to z = 2 in typical main-sequence galaxies. Our focus is on constraining the evolution of PAH strength and the dust-obscured luminosity fraction before and during cosmic noon, the epoch of peak star formation activity in the Universe. Methods. In this study, we utilise MIRI multi-band imaging data from the SMILES survey (5 to 25 μm), complemented with NIRCam photometry from the JADES survey (1 to 5 μm), available HST photometry (0.4 to 0.9 μm), and spectroscopic redshifts from the FRESCO and JADES surveys in GOODS-S for 443 star-forming (without dominant active galactic nucleus (AGN)) galaxies at z = 0.7-2.0. This redshift range was chosen to ensure that the MIRI data cover mid-IR dust emission. Our methodology involved employing ultraviolet (UV) to IR energy balance SED fitting to robustly constrain the fraction of dust mass in PAHs and dust-obscured luminosity. Additionally, we inferred dust sizes from MIRI 15 μm imaging data, enhancing our understanding of the physical characteristics of dust within these galaxies. Results. We find a strong correlation between the fraction of dust in PAHs (PAH fraction, qPAH) with stellar mass. Moreover, the sub-sample with robust qPAH measurements (N = 216) shows a similar behaviour between qPAH and gas-phase ∼ z ∼ 0, suggesting a universal relation: qPAH is constant (∼3.4%) above a metallicity of Z ∼ 0.5 Z⊙ and decreases to < 1% at metallicities ≲0.3 Z⊙. This indicates that metallicity is a good indicator of the interstellar medium properties that affect the balance between the formation and destruction of PAHs. The lack of a redshift evolution from z ∼ 0-2 also implies that above Z ∼ 0.5 Z⊙ the PAH emission effectively traces obscured luminosity and the previous locally calibrated PAH-SFR calibrations remain applicable in this metallicity regime. We observe a strong correlation between the obscured UV luminosity fraction (ratio of obscured to total luminosity) and stellar mass. Above the s tellar mass of M∗ > 5 × 109 M⊙, on average, more than half of the emitted luminosity is obscured, while there exists a non-negligible population of lower-mass galaxies with > 50% obscured fractions. At a fixed mass, the obscured fraction correlates with SFR surface density. This is a result of higher dust covering fractions in galaxies with more compact star-forming regions. Similarly, galaxies with high IRX (IR to UV luminosity) at a given mass or UV continuum slope (β) tend to have higher ΣSFR and shallower attenuation curves, owing to their higher effective dust optical depths and more compact star-forming regions.
KW - Dust
KW - Evolution
KW - Extinction
KW - Galaxies: ISM
KW - Galaxies: evolution
KW - Galaxies: general
KW - Galaxies: high-redshift
UR - http://www.scopus.com/inward/record.url?scp=85206291080&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85206291080&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202449579
DO - 10.1051/0004-6361/202449579
M3 - Article
AN - SCOPUS:85206291080
SN - 0004-6361
VL - 690
JO - Astronomy and astrophysics
JF - Astronomy and astrophysics
M1 - A89
ER -