TY - JOUR
T1 - A multistep automatic calibration scheme for river forecasting models
AU - Hogue, Terri S.
AU - Sorooshian, Soroosh
AU - Gupta, Hoshin
AU - Holz, Andrea
AU - Braatz, Dean
PY - 2000/12
Y1 - 2000/12
N2 - Operational flood forecasting models vary in complexity, but nearly all have parameters for which values must be estimated. The traditional and widespread manual calibration approach requires considerable training and experience and is typically laborious and time consuming. Under the Advanced Hydrologic Prediction System modernization program. National Weather Service (NWS) hydrologists must produce rapid calibrations for roughly 4000 forecast points throughout the United States. The classical single-objective automatic calibration approach, although fast and objective, has not received widespread acceptance among operational hydrologists. In the work reported here, University of Arizona researchers and NWS personnel have collaborated to combine the strengths of the manual and automatic calibration strategies. The result is a multistep automatic calibration scheme (MACS) that emulates the progression of steps followed by NWS hydrologists during manual calibration and rapidly provides acceptable parameter estimates. The MACS approach was tested on six operational basins (drainage areas from 671 to 1302 km2) in the North Central River Forecast Center (NCRFC) area. The results were found to compare favorably with the NCRFC manual calibrations in terms of both visual inspection and statistical measures, such as daily root-mean-square error and percent bias by flow group. Further, implementation of the MACS procedure requires only about 3-4 person hours per basin, in contrast to the 15-20 person hours typically required using the manual approach. Based on this study, the NCRFC has opted to perform further testing of the MACS procedure at a large number of forecast points that constitute the Grand River (Michigan) forecast group. MACS is a time-saving, reliable approach that can provide calibrations that are of comparable quality to the NCRFC's current methods.
AB - Operational flood forecasting models vary in complexity, but nearly all have parameters for which values must be estimated. The traditional and widespread manual calibration approach requires considerable training and experience and is typically laborious and time consuming. Under the Advanced Hydrologic Prediction System modernization program. National Weather Service (NWS) hydrologists must produce rapid calibrations for roughly 4000 forecast points throughout the United States. The classical single-objective automatic calibration approach, although fast and objective, has not received widespread acceptance among operational hydrologists. In the work reported here, University of Arizona researchers and NWS personnel have collaborated to combine the strengths of the manual and automatic calibration strategies. The result is a multistep automatic calibration scheme (MACS) that emulates the progression of steps followed by NWS hydrologists during manual calibration and rapidly provides acceptable parameter estimates. The MACS approach was tested on six operational basins (drainage areas from 671 to 1302 km2) in the North Central River Forecast Center (NCRFC) area. The results were found to compare favorably with the NCRFC manual calibrations in terms of both visual inspection and statistical measures, such as daily root-mean-square error and percent bias by flow group. Further, implementation of the MACS procedure requires only about 3-4 person hours per basin, in contrast to the 15-20 person hours typically required using the manual approach. Based on this study, the NCRFC has opted to perform further testing of the MACS procedure at a large number of forecast points that constitute the Grand River (Michigan) forecast group. MACS is a time-saving, reliable approach that can provide calibrations that are of comparable quality to the NCRFC's current methods.
UR - http://www.scopus.com/inward/record.url?scp=0034348590&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034348590&partnerID=8YFLogxK
U2 - 10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2
DO - 10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2
M3 - Article
AN - SCOPUS:0034348590
SN - 1525-755X
VL - 1
SP - 524
EP - 542
JO - Journal of Hydrometeorology
JF - Journal of Hydrometeorology
IS - 6
ER -