A multi-scale study of infrared and radio emission from Scd galaxy M 33

F. S. Tabatabaei, R. Beck, M. Krause, E. M. Berkhuijsen, R. Gehrz, K. D. Gordon, J. L. Hinz, R. Humphreys, K. McQuinn, E. Polomski, G. H. Rieke, C. E. Woodward

Research output: Contribution to journalArticlepeer-review

67 Scopus citations


Aims. We investigate the energy sources of the infrared (IR) emission and their relation to the radio continuum emission at various spatial scales within the Scd galaxy M 33. Methods. We use the data at the Spitzer wavelengths of 24, 70, and 160μm, as well as recent radio continuum maps at 3.6cm and 20 cm observed with the 100-m Effelsberg telescope and VLA, respectively. We use the wavelet transform of these maps to a) separate the diffuse emission components from compact sources, b) compare the emission at different wavelengths, and c) study the radio-IR correlation at various spatial scales. An Ha map serves as a tracer of the star forming regions and as an indicator of the thermal radio emission. Results. The bright HII regions affect the wavelet spectra causing dominant small scales or decreasing trends towards the larger scales. The dominant scale of the 70μm emission is larger than that of the 24μm emission, while the 160μm emission shows a smooth wavelet spectrum. The radio and Hα maps are well correlated with all 3 MIPS maps, although their correlations with the 160μm map are weaker. After subtracting the bright HII regions, the 24 and 70μm maps show weaker correlations with the 20cm map than with the 3.6cm map at most scales. We also find a strong correlation between the 3.6cm and Hα emission at all scales. Conclusions. Comparing the results with and without the bright HII regions, we conclude that the IR emission is influenced by young, massive stars increasingly with decreasing wavelength from 160 to 24μm. The radio-IR correlations indicate that the warm dust-thermal radio correlation is stronger than the cold dust-nonthermal radio correlation at scales smaller than 4 kpc. A perfect 3.6 cm-Hα correlation implies that extinction has no significant effect on Hα emitting structures.

Original languageEnglish (US)
Pages (from-to)509-519
Number of pages11
JournalAstronomy and astrophysics
Issue number2
StatePublished - May 2007


  • Galaxies: clusters: individual: M 33
  • ISM: HII regions
  • Infrared: galaxies
  • Methods: data analysis
  • Radio continuum: galaxies

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'A multi-scale study of infrared and radio emission from Scd galaxy M 33'. Together they form a unique fingerprint.

Cite this