A low-dimensional physically based model of hydrologic control of shallow landsliding on complex hillslopes

Ali Talebi, Remko Uijlenhoet, Peter A. Troch

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


Hillslopes have complex three-dimensional shapes that are characterized by their plan shape, profile curvature of surface and bedrock, and soil depth. To investigate the stability of complex hillslopes (with different slope curvatures and plan shapes), we combine the hillslopestorage Boussinesq (HSB) model with the infinite slope stability method. The HSB model is based on the continuity and Darcy equations expressed in terms of storage along the hillslope. Solutions of the HSB equation account explicitly for plan shape by introducing the hillslope width function and for profile curvature through the bedrock slope angle and the hillslope soil depth function. The presented model is composed of three parts: a topography model conceptualizing three-dimensional soil mantled landscapes, a dynamic hydrology model for shallow subsurface flow and water table depth (HSB model) and an infinite slope stability method based on the Mohr-Coulomb failure law. The resulting hillslope-storage Boussinesq stability model (HSB-SM) is able to simulate rain-induced shallow landsliding on hillslopes with non-constant bedrock slope and non-parallel plan shape. We apply the model to nine characteristic hillslope types with three different profile curvatures (concave, straight, convex) and three different plan shapes (convergent, parallel, divergent). In the presented model, the unsaturated storage has been calculated based on the unit head gradient assumption. To relax this assumption and to investigate the effect of neglecting the variations of unsaturated storage on the assessment of slope stability in the transient case, we also combine a coupled model of saturated and unsaturated storage and the infinite slope stability method. The results show that the variations of the unsaturated zone storage do not play a critical role in hillslope stability. Therefore, it can be concluded that the presented dynamic slope stability model (HSB-SM) can be used safely for slope stability analysis on complex hillslopes. Our results show that after a certain period of rainfall the convergent hillslopes with concave and straight profiles become unstable more quickly than others, whilst divergent convex hillslopes remain stable (even after intense rainfall). In addition, the relation between subsurface flow and hillslope stability has been investigated. Our analyses show that the minimum safety factor (FS) occurs when the rate of subsurface flow is a maximum. In fact, by increasing the subsurface flow, stability decreases for all hillslope shapes.

Original languageEnglish (US)
Pages (from-to)1964-1976
Number of pages13
JournalEarth Surface Processes and Landforms
Issue number13
StatePublished - 2008


  • HSB-SM
  • Hillslope stability
  • Subsurface flow

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Earth-Surface Processes
  • Earth and Planetary Sciences (miscellaneous)


Dive into the research topics of 'A low-dimensional physically based model of hydrologic control of shallow landsliding on complex hillslopes'. Together they form a unique fingerprint.

Cite this