Abstract
Post-translational modifications on various receptor proteins have significant effects on receptor activation. For the Transient Receptor Potential family V type 1 (TRPV1) receptor, phosphorylation of certain serine/threonine amino acid residues sensitizes the receptor to activation by capsaicin and heat. Although Protein Kinase C (PKC) phosphorylates TRPV1 on certain serine/threonine residues, it is not completely understood how PKC functionally associates with TRPV1. Recent studies have reported that the A-kinase Anchoring Protein 150 (AKAP150) mediates PKA phosphorylation of TRPV1 in several nociceptive models. Here, we demonstrate that AKAP150 also mediates PKC-directed phosphorylation and sensitization of TRPV1. In cultured rat trigeminal ganglia, immunocytochemical analyses demonstrate co-localization of AKAP150 and PKC isoforms α, δ, ε, and γ in TRPV1-positive neurons. Additional biochemical evidence supports immunocytochemical results, indicating that AKAP150 preferentially associates with certain PKC isoforms in rat trigeminal ganglia neurons. Employing siRNA-mediated knock-down of AKAP150 expression, we demonstrate that PKC-mediated phosphorylation of TRPV1 and sensitization to a capsaicin response is dependent upon functional expression of the AKAP150 scaffolding protein. Furthermore, PKC-induced sensitization to a thermal stimulus is abrogated in AKAP150 knock-out animals relative to wild-type. Collectively, the results from these studies indicate that the AKAP150 scaffolding protein functionally modulates PKC-mediated phosphorylation and sensitization of the TRPV1 receptor in rat sensory neurons, suggesting the scaffolding protein to be an integral regulator of peripheral inflammatory hyperalgesia.
Original language | English (US) |
---|---|
Pages (from-to) | 301-307 |
Number of pages | 7 |
Journal | Pain |
Volume | 146 |
Issue number | 3 |
DOIs | |
State | Published - Dec 5 2009 |
Externally published | Yes |
Keywords
- AKAP
- Hyperalgesia
- PKC
- Pain
- TRPV1
- Trigeminal
ASJC Scopus subject areas
- Neurology
- Clinical Neurology
- Anesthesiology and Pain Medicine