A Generative Learning Approach for Spatio-temporal Modeling in Connected Vehicular Network

Rong Xia, Yong Xiao, Yingyu Li, Marwan Krunz, Dusit Niyato

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Spatio-temporal modeling of wireless access latency is of great importance for connected-vehicular systems. The quality of the molded results rely heavily on the number and quality of samples which can vary significantly due to the sensor deployment density as well as traffic volume and density. This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive spatio-temporal of wireless access latency of a connected vehicles across a wide geographical area. LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure. In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Variational Autoencoder (VAE), a deep generative model, to create latency samples with similar probability distribution with the original samples. Finally, LaMI establishes the empirical PDF of latency performance and maps the PDFs into the confidence levels of different vehicular service requirements. Extensive performance evaluation has been conducted using the real traces collected in a commercial LTE network in a university campus. Simulation results show that our proposed model can significantly improve the accuracy of latency modeling especially compared to existing popular solutions such as interpolation and nearest neighbor-based methods.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Communications, ICC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728150895
DOIs
StatePublished - Jun 2020
Event2020 IEEE International Conference on Communications, ICC 2020 - Dublin, Ireland
Duration: Jun 7 2020Jun 11 2020

Publication series

NameIEEE International Conference on Communications
Volume2020-June
ISSN (Print)1550-3607

Conference

Conference2020 IEEE International Conference on Communications, ICC 2020
Country/TerritoryIreland
CityDublin
Period6/7/206/11/20

Keywords

  • C-V2X
  • Connected vehicle
  • Variational Autoencoder
  • latency modeling

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A Generative Learning Approach for Spatio-temporal Modeling in Connected Vehicular Network'. Together they form a unique fingerprint.

Cite this